Influence of Pyrolysis Temperature on Product Distribution and Characteristics of Anaerobic Sludge

Pyrolysis of anaerobically digested sludge can serve as an efficient biomass for biofuel production. Pyrolysis produces products like char, bio-oil, and combustible gases by thermochemical conversion process. It can be used for sludge treatment that decreases sludge disposal problems. Sludge produce...

Full description

Bibliographic Details
Main Authors: Muhammad Usman Hanif, Mohammed Zwawi, Sergio C. Capareda, Hamid Iqbal, Mohammed Algarni, Bassem F. Felemban, Ali Bahadar, Adeel Waqas
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/1/79
Description
Summary:Pyrolysis of anaerobically digested sludge can serve as an efficient biomass for biofuel production. Pyrolysis produces products like char, bio-oil, and combustible gases by thermochemical conversion process. It can be used for sludge treatment that decreases sludge disposal problems. Sludge produced from anaerobic co-digestion (microalgae, cow dung, and paper) waste has high carbon and hydrogen content. We investigated the candidacy of the anaerobic sludge having high heating value (HHV) of 20.53 MJ/kg as a reliable biomass for biofuels production. The process of pyrolysis was optimized with different temperatures (400, 500, and 600 °C) to produce high quantity and improved quality of the products, mainly bio-oil, char, and gas. The results revealed that with the increase in pyrolysis temperature the quantity of char decreased (81% to 55%), bio-oil increased (3% to 7%), and gas increased (2% to 5%). The HHV of char (19.2 MJ/kg), bio-oil (28.1 MJ/kg), and gas (18.1 MJ/kg) were predominantly affected by the amount of fixed carbon, hydrocarbons, and volatile substance, respectively. The study confirmed that the anaerobic sludge is a promising biomass for biofuel production and pyrolysis is an efficient method for its safe disposal.
ISSN:1996-1073