g-Natural metrics on unit tangent sphere bundles via a Musso-Tricerri process
E. Musso and F. Tricerri had given a process of construction of Riemannian metrics on tangent bundles and unit tangent bundles, over m-dimensional Riemannian manifolds (M, g), from some special quadratic forms an OM × R^m and OM, respectively, where OM is the bundle of orthonormal frames [7]. We pr...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sapienza Università Editrice
2010-01-01
|
Series: | Rendiconti di Matematica e delle Sue Applicazioni |
Subjects: | |
Online Access: | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2010(3-4)/239-247.pdf |
id |
doaj-0358f37f2b6345769ae3344ed33a3d5f |
---|---|
record_format |
Article |
spelling |
doaj-0358f37f2b6345769ae3344ed33a3d5f2021-08-16T11:03:12ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33502010-01-01303-4239247g-Natural metrics on unit tangent sphere bundles via a Musso-Tricerri processMohamed Tahar Kadaoui Abbassi0Université Sidi Mohamed Ben AbdallahE. Musso and F. Tricerri had given a process of construction of Riemannian metrics on tangent bundles and unit tangent bundles, over m-dimensional Riemannian manifolds (M, g), from some special quadratic forms an OM × R^m and OM, respectively, where OM is the bundle of orthonormal frames [7]. We prove in this note that every Riemannian g-natural metric on the unit tangent sphere bundle over a Riemannian manifold can be constructed by the Musso-Tricerri’s process. As a corollary, we show that every Riemannian g-natural metric on the unit tangent bundle, over a two-point homogeneous space, is homogeneous.https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2010(3-4)/239-247.pdfunit tangent (sphere) bundleeinstein manifoldg-natural metric |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohamed Tahar Kadaoui Abbassi |
spellingShingle |
Mohamed Tahar Kadaoui Abbassi g-Natural metrics on unit tangent sphere bundles via a Musso-Tricerri process Rendiconti di Matematica e delle Sue Applicazioni unit tangent (sphere) bundle einstein manifold g-natural metric |
author_facet |
Mohamed Tahar Kadaoui Abbassi |
author_sort |
Mohamed Tahar Kadaoui Abbassi |
title |
g-Natural metrics on unit tangent sphere bundles via a Musso-Tricerri process |
title_short |
g-Natural metrics on unit tangent sphere bundles via a Musso-Tricerri process |
title_full |
g-Natural metrics on unit tangent sphere bundles via a Musso-Tricerri process |
title_fullStr |
g-Natural metrics on unit tangent sphere bundles via a Musso-Tricerri process |
title_full_unstemmed |
g-Natural metrics on unit tangent sphere bundles via a Musso-Tricerri process |
title_sort |
g-natural metrics on unit tangent sphere bundles via a musso-tricerri process |
publisher |
Sapienza Università Editrice |
series |
Rendiconti di Matematica e delle Sue Applicazioni |
issn |
1120-7183 2532-3350 |
publishDate |
2010-01-01 |
description |
E. Musso and F. Tricerri had given a process of construction of Riemannian metrics on tangent bundles and unit tangent bundles, over m-dimensional
Riemannian manifolds (M, g), from some special quadratic forms an OM × R^m and OM, respectively, where OM is the bundle of orthonormal frames [7]. We prove in this note that every Riemannian g-natural metric on the unit tangent sphere bundle over a Riemannian manifold can be constructed by the Musso-Tricerri’s process. As a corollary, we show that every Riemannian g-natural metric on the unit tangent bundle, over a two-point homogeneous space, is homogeneous. |
topic |
unit tangent (sphere) bundle einstein manifold g-natural metric |
url |
https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2010(3-4)/239-247.pdf |
work_keys_str_mv |
AT mohamedtaharkadaouiabbassi gnaturalmetricsonunittangentspherebundlesviaamussotricerriprocess |
_version_ |
1721205833035939840 |