Uncertainty in the Physical Testing of Floating Wind Energy Platforms’ Accuracy versus Precision

This paper examines the impact on experimental uncertainty of introducing aerodynamic and rotor gyroscopic loading on a model multirotor floating wind energy platform during physical testing. In addition, a methodology and a metric are presented for the assessment of the uncertainty across the full...

Full description

Bibliographic Details
Main Authors: Cian J. Desmond, Jan-Christoph Hinrichs, Jimmy Murphy
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/3/435
Description
Summary:This paper examines the impact on experimental uncertainty of introducing aerodynamic and rotor gyroscopic loading on a model multirotor floating wind energy platform during physical testing. In addition, a methodology and a metric are presented for the assessment of the uncertainty across the full time series for the response of a floating wind energy platform during wave basin testing. It is shown that there is a significant cost incurred in terms of experimental uncertainty through the addition of rotor thrust in the laboratory environment for the considered platform. A slight reduction in experimental uncertainty is observed through the introduction of gyroscopic rotor loading for most platform responses.
ISSN:1996-1073