Summary: | This study examined the effect of nitrogen (N) on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant) straw in absence (BC0) and presence (BCN) of N and monitored for dynamics of carbon dioxide (CO2) flux, phospholipid fatty acids (PLFAs) profile and dissolved organic carbon (DOC) content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05), and the proportions of decomposed biochar carbon (C) were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05) higher than DOC in biochar (1.75%) and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05) increased the proportion of gram-positive (G+) bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G-) bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.
|