Bacterial diversity analysis of Yumthang hot spring, North Sikkim, India by Illumina sequencing

Abstract Background Hot springs harbor rich bacterial diversity that could be the source of commercially important enzymes, antibiotics and many more products. Most of the hot springs present in Northeast of India are unexplored and their microbial diversity analysis could be of great interest to fa...

Full description

Bibliographic Details
Main Authors: Amrita Kumari Panda, Satpal Singh Bisht, Bodh Raj Kaushal, Surajit De Mandal, Nachimuthu Senthil Kumar, Bharat C. Basistha
Format: Article
Language:English
Published: BMC 2017-08-01
Series:Big Data Analytics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s41044-017-0022-8
Description
Summary:Abstract Background Hot springs harbor rich bacterial diversity that could be the source of commercially important enzymes, antibiotics and many more products. Most of the hot springs present in Northeast of India are unexplored and their microbial diversity analysis could be of great interest to facilitate various industrial, agricultural and medicinal applications. The present study is an attempt to analyze the comprehensive bacterial diversity of Yumthang hot spring, Sikkim located at an altitude of 11, 800 ft. with a close proximity of Tibet 27° 47′ 30″ N 88° 42′ E using culture independent approach i.e. 16S rRNA gene amplicon metagenomic sequencing. Results The temperature and pH of the hot spring was recorded as 390–410 C and 8 respectively. Metagenome comprised of 1, 381,343 raw sequences with a sequence length of 151 bp and 55.62% G + C content. Metagenome sequence information is submitted at NCBI, SRA database under accession no. SRP057072. A total of 9, 95, 955 pre-processed reads were clustered into 1, 999 representative OTUs (operational taxonomical units) phylogenetically comprising of 17 bacterial phyla including unknown phylum indicating 99 families. Hot spring bacterial community is dominated by Proteobacteria (54.33%), Actinobacteria (32.19%), Firmicutes (6.03%), Bacteroidetes (2.87%) and unclassified bacteria (2.91%) respectively out of the total reads. Conclusions Several bacterial and archaeal sequences remained taxonomically unclassified, indicating potentially novel microorganisms in this hot spring ecosystem. Metagenomics of this habitat will facilitate identification of microorganisms possessing industrially relevant traits.
ISSN:2058-6345