ANALISIS DATA PANEL UNTUK MENGUJI PENGARUH RISIKO TERHADAP RETURN SAHAM SEKTOR FARMASI DENGAN LEAST SQUARE DUMMY VARIABLE

Panel data analysis is a method of studying pooling observations on a cross-section of subjects over several time periods. There are several types of panel data analytic models, constant coefficients models, fixed effects models, and random effects models. Fixed effects models would have constant sl...

Full description

Bibliographic Details
Main Authors: Tutut Dewi Astuti, Di Asih I Maruddani
Format: Article
Language:English
Published: Universitas Diponegoro 2009-12-01
Series:Media Statistika
Online Access:https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2496
id doaj-03126990bcca4717b00b3683672ce837
record_format Article
spelling doaj-03126990bcca4717b00b3683672ce8372020-11-25T03:27:43ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472009-12-0122718010.14710/medstat.2.2.71-802158ANALISIS DATA PANEL UNTUK MENGUJI PENGARUH RISIKO TERHADAP RETURN SAHAM SEKTOR FARMASI DENGAN LEAST SQUARE DUMMY VARIABLETutut Dewi AstutiDi Asih I MaruddaniPanel data analysis is a method of studying pooling observations on a cross-section of subjects over several time periods. There are several types of panel data analytic models, constant coefficients models, fixed effects models, and random effects models. Fixed effects models would have constant slopes but intercepts that differ according to the cross-sectional (group) unit. While the intercept is cross-section (group) specific, it may or may not differ over time. To show how to test for the presence of statistically significant group and/or time effects, i-1 dummy variables are used to designate the particular group, so we use Least Squares Dummy Variable method. In this paper, we use this method for testing the relationship between risk and stock return at farmation sector data in Indonesia for the time period 2007-2008. The empirical results showed that the model is statistically significant time effects.   Keywords : Risk, Stock Return, Panel Data, Least Square Dummy Variablehttps://ejournal.undip.ac.id/index.php/media_statistika/article/view/2496
collection DOAJ
language English
format Article
sources DOAJ
author Tutut Dewi Astuti
Di Asih I Maruddani
spellingShingle Tutut Dewi Astuti
Di Asih I Maruddani
ANALISIS DATA PANEL UNTUK MENGUJI PENGARUH RISIKO TERHADAP RETURN SAHAM SEKTOR FARMASI DENGAN LEAST SQUARE DUMMY VARIABLE
Media Statistika
author_facet Tutut Dewi Astuti
Di Asih I Maruddani
author_sort Tutut Dewi Astuti
title ANALISIS DATA PANEL UNTUK MENGUJI PENGARUH RISIKO TERHADAP RETURN SAHAM SEKTOR FARMASI DENGAN LEAST SQUARE DUMMY VARIABLE
title_short ANALISIS DATA PANEL UNTUK MENGUJI PENGARUH RISIKO TERHADAP RETURN SAHAM SEKTOR FARMASI DENGAN LEAST SQUARE DUMMY VARIABLE
title_full ANALISIS DATA PANEL UNTUK MENGUJI PENGARUH RISIKO TERHADAP RETURN SAHAM SEKTOR FARMASI DENGAN LEAST SQUARE DUMMY VARIABLE
title_fullStr ANALISIS DATA PANEL UNTUK MENGUJI PENGARUH RISIKO TERHADAP RETURN SAHAM SEKTOR FARMASI DENGAN LEAST SQUARE DUMMY VARIABLE
title_full_unstemmed ANALISIS DATA PANEL UNTUK MENGUJI PENGARUH RISIKO TERHADAP RETURN SAHAM SEKTOR FARMASI DENGAN LEAST SQUARE DUMMY VARIABLE
title_sort analisis data panel untuk menguji pengaruh risiko terhadap return saham sektor farmasi dengan least square dummy variable
publisher Universitas Diponegoro
series Media Statistika
issn 1979-3693
2477-0647
publishDate 2009-12-01
description Panel data analysis is a method of studying pooling observations on a cross-section of subjects over several time periods. There are several types of panel data analytic models, constant coefficients models, fixed effects models, and random effects models. Fixed effects models would have constant slopes but intercepts that differ according to the cross-sectional (group) unit. While the intercept is cross-section (group) specific, it may or may not differ over time. To show how to test for the presence of statistically significant group and/or time effects, i-1 dummy variables are used to designate the particular group, so we use Least Squares Dummy Variable method. In this paper, we use this method for testing the relationship between risk and stock return at farmation sector data in Indonesia for the time period 2007-2008. The empirical results showed that the model is statistically significant time effects.   Keywords : Risk, Stock Return, Panel Data, Least Square Dummy Variable
url https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2496
work_keys_str_mv AT tututdewiastuti analisisdatapaneluntukmengujipengaruhrisikoterhadapreturnsahamsektorfarmasidenganleastsquaredummyvariable
AT diasihimaruddani analisisdatapaneluntukmengujipengaruhrisikoterhadapreturnsahamsektorfarmasidenganleastsquaredummyvariable
_version_ 1724587496006746112