ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION

This paper proposes a method (denoted by WD-ANN) that combines the Artificial Neural Networks (ANN) and the Wavelet Decomposition (WD) to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conver...

Full description

Bibliographic Details
Main Authors: Luiz Albino Teixeira Júnior, Rafael Morais de Souza, Moisés Lima de Menezes, Keila Mara Cassiano, José Francisco Moreira Pessanha, Reinaldo Castro Souza
Format: Article
Language:English
Published: Sociedade Brasileira de Pesquisa Operacional 2015-04-01
Series:Pesquisa Operacional
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100073&lng=en&tlng=en
id doaj-0305f4ab3a734c16be7fea3a56fb8981
record_format Article
spelling doaj-0305f4ab3a734c16be7fea3a56fb89812020-11-25T01:01:06ZengSociedade Brasileira de Pesquisa OperacionalPesquisa Operacional1678-51422015-04-01351739010.1590/0101-7438.2015.035.01.0073S0101-74382015000100073ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATIONLuiz Albino Teixeira JúniorRafael Morais de SouzaMoisés Lima de MenezesKeila Mara CassianoJosé Francisco Moreira PessanhaReinaldo Castro SouzaThis paper proposes a method (denoted by WD-ANN) that combines the Artificial Neural Networks (ANN) and the Wavelet Decomposition (WD) to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1) are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN) improved substantially the performance over the (traditional) ANN method.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100073&lng=en&tlng=enwavelet decompositionartificial neural networksforecasts
collection DOAJ
language English
format Article
sources DOAJ
author Luiz Albino Teixeira Júnior
Rafael Morais de Souza
Moisés Lima de Menezes
Keila Mara Cassiano
José Francisco Moreira Pessanha
Reinaldo Castro Souza
spellingShingle Luiz Albino Teixeira Júnior
Rafael Morais de Souza
Moisés Lima de Menezes
Keila Mara Cassiano
José Francisco Moreira Pessanha
Reinaldo Castro Souza
ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION
Pesquisa Operacional
wavelet decomposition
artificial neural networks
forecasts
author_facet Luiz Albino Teixeira Júnior
Rafael Morais de Souza
Moisés Lima de Menezes
Keila Mara Cassiano
José Francisco Moreira Pessanha
Reinaldo Castro Souza
author_sort Luiz Albino Teixeira Júnior
title ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION
title_short ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION
title_full ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION
title_fullStr ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION
title_full_unstemmed ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION
title_sort artificial neural network and wavelet decomposition in the forecast of global horizontal solar radiation
publisher Sociedade Brasileira de Pesquisa Operacional
series Pesquisa Operacional
issn 1678-5142
publishDate 2015-04-01
description This paper proposes a method (denoted by WD-ANN) that combines the Artificial Neural Networks (ANN) and the Wavelet Decomposition (WD) to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1) are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN) improved substantially the performance over the (traditional) ANN method.
topic wavelet decomposition
artificial neural networks
forecasts
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100073&lng=en&tlng=en
work_keys_str_mv AT luizalbinoteixeirajunior artificialneuralnetworkandwaveletdecompositionintheforecastofglobalhorizontalsolarradiation
AT rafaelmoraisdesouza artificialneuralnetworkandwaveletdecompositionintheforecastofglobalhorizontalsolarradiation
AT moiseslimademenezes artificialneuralnetworkandwaveletdecompositionintheforecastofglobalhorizontalsolarradiation
AT keilamaracassiano artificialneuralnetworkandwaveletdecompositionintheforecastofglobalhorizontalsolarradiation
AT josefranciscomoreirapessanha artificialneuralnetworkandwaveletdecompositionintheforecastofglobalhorizontalsolarradiation
AT reinaldocastrosouza artificialneuralnetworkandwaveletdecompositionintheforecastofglobalhorizontalsolarradiation
_version_ 1725210793303080960