Reconstruction of orientation of stresses acting in infinity within the Kovdor ore body based on field determinations

Mining Institute KSC RAS has conducted research which aim is to study the possibilities of increasing the tilt angles of pit walls in massifs of solid rock. One of the problems the solution of which will contribute to achieving this goal is to determine the direction of the maximum component of pr...

Full description

Bibliographic Details
Main Authors: Rybin V. V., Savchenko S. N.
Format: Article
Language:Russian
Published: Murmansk State Technical University 2017-03-01
Series:Vestnik MGTU
Subjects:
Online Access:http://vestnik.mstu.edu.ru/show-eng.shtml?art=1846&pdf=1
Description
Summary:Mining Institute KSC RAS has conducted research which aim is to study the possibilities of increasing the tilt angles of pit walls in massifs of solid rock. One of the problems the solution of which will contribute to achieving this goal is to determine the direction of the maximum component of principal stresses in intact massif on the "infinity" necessary to work out mathematical models of rock massif including quarry recess. To solve this problem it has been proposed to use the results of parameters' measurement of stress state by the unloading method in near-wall rock massif. The basic research of near-wall rock massif has been conducted on mine quarry "Zhelezny" (JSC "Kovdor ore processing plant"). The measurements have been performed by the discharge method in option of end measurements directly from the quarry ledges on special observation stations using horizontal wells. The direction of maximum compression acting in sub-meridional course in the Kovdor apatiteshtafelyte-baddeleite deposit (the Kovdor ore cluster) has been determined by the conformal mapping method on the basis of experimental estimations of stress parameters in the rock massif. The results obtained are of great importance for assessing a level of stresses acting directly in a near open-pit zone. They are applied to set boundary conditions when modeling stress-strain state of near-wall rock massif and assess slope stability.
ISSN:1560-9278
1997-4736