Assessing the Temporal Response of Tropical Dry Forests to Meteorological Drought

Due to excessive human disturbances, as well as predicted changes in precipitation regimes, tropical dry forests (TDFs) are susceptible to meteorological droughts. Here, we explored the response of TDFs to meteorological drought by conducting temporal correlations between the MODIS-derived normalize...

Full description

Bibliographic Details
Main Authors: Lidong Zou, Sen Cao, Anzhou Zhao, Arturo Sanchez-Azofeifa
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Remote Sensing
Subjects:
LST
Online Access:https://www.mdpi.com/2072-4292/12/14/2341
Description
Summary:Due to excessive human disturbances, as well as predicted changes in precipitation regimes, tropical dry forests (TDFs) are susceptible to meteorological droughts. Here, we explored the response of TDFs to meteorological drought by conducting temporal correlations between the MODIS-derived normalized difference vegetation index (NDVI) and land surface temperature (LST) to a standardized precipitation index (SPI) between March 2000 and March 2017 at the Santa Rosa National Park Environmental Monitoring Super Site (SRNP-EMSS), Guanacaste, Costa Rica. We conducted this study using monthly and seasonal scales. Our results indicate that the NDVI and LST are largely influenced by seasonality, as well as the magnitude, duration, and timing of precipitation. We find that greenness and evapotranspiration are highly sensitive to precipitation when TDFs suffer from long-term water deficiency, and they tend to be slightly resistant to meteorological drought in the wet season. Greenness is more resistant to short-term rainfall deficiency than evapotranspiration, but greenness is more sensitive to precipitation after a period of rainfall deficiency. Precipitation can still strongly influence evapotranspiration on the canopy surface, but greenness is not controlled by the rainfall, but rather phenological characteristics when leaves begin to senesce.
ISSN:2072-4292