Fish Scales and Their Biomimetic Applications

Biomaterials are evolving quite rapidly over the last decade. Many applications have been considered toward their involvement in saving lives in the line of duty for law enforcement agencies and military operations. This article discusses recent work on the role of biomaterials that can be considere...

Full description

Bibliographic Details
Main Authors: Asim Asghar Yaseen, Taha Waqar, Muhammad Azhar Ali Khan, Muhammad Asad, Faramarz Djavanroodi
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-06-01
Series:Frontiers in Materials
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmats.2021.649456/full
Description
Summary:Biomaterials are evolving quite rapidly over the last decade. Many applications have been considered toward their involvement in saving lives in the line of duty for law enforcement agencies and military operations. This article discusses recent work on the role of biomaterials that can be considered as a competitive alternative to composites, being used against ballistic impacts. The fish-scaled biomaterials are focused on in this paper, highlighting their excellent mechanical properties and structural configurations. In its natural environment, the scale provides fishes with an armor plating, which is significantly effective in their survival against attacks of predator and the impact inflicted from sharp teeth. These bioinspired materials, if engineered properly, can provide an excellent alternative to current Kevlar® type armors, which are significantly heavier and can cause fatigue to the human body over long-term usage. The investigated materials can provide effective alternatives to heavier and expensive materials currently used in different industrial applications. Additionally, some recent development in the usage of fish scales as a biomaterial and its applications in rapid prototyping techniques are presented. Finally, this review provides useful information to researchers in developing and processing cost-effective biomaterials.
ISSN:2296-8016