Fabrication of carbon nanotube-reinforced mortar specimens: evaluation of mechanical and pressure-sensitive properties

Carbon-based nanomaterials are promising reinforcing elements for the development of “smart” self-sensing cementitious composites due to their exceptional mechanical and electrical properties. Significant research efforts have been committed on the synthesis of cement-based composite materials reinf...

Full description

Bibliographic Details
Main Authors: Karaxi Evangelia K., Kanellopoulou Irene A., Karatza Anna, Kartsonakis Ioannis A., Charitidis Costas A.
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201818801019
Description
Summary:Carbon-based nanomaterials are promising reinforcing elements for the development of “smart” self-sensing cementitious composites due to their exceptional mechanical and electrical properties. Significant research efforts have been committed on the synthesis of cement-based composite materials reinforced with carbonaceous nanostructures, covering every aspect of the production process (type of nanomaterial, mixing process, electrode type, measurement methods etc.). In this study, the aim is to develop a well-defined repeatable procedure for the fabrication as well as the evaluation of pressure-sensitive properties of intrinsically self-sensing cementitious composites incorporating carbon- based nanomaterials. Highly functionalized multi-walled carbon nanotubes with increased dispersibility in polar media were used in the development of advanced reinforced mortar specimens which increased their mechanical properties and provided repeatable pressure-sensitive properties.
ISSN:2261-236X