Comparative assessment of passive surveillance in disease-free and endemic situation: Example of <it>Brucella melitensis </it>surveillance in Switzerland and in Bosnia and Herzegovina

<p>Abstract</p> <p>Background</p> <p>Globalization and subsequent growth in international trade in animals and animal products has increased the importance of international disease reporting. Efficient and reliable surveillance systems are needed in order to document th...

Full description

Bibliographic Details
Main Authors: Haracic Sabina, Hadorn Daniela C, Stärk Katharina DC
Format: Article
Language:English
Published: BMC 2008-12-01
Series:BMC Veterinary Research
Online Access:http://www.biomedcentral.com/1746-6148/4/52
id doaj-02a8c160493e4c6e9aed79b62a2afaa8
record_format Article
spelling doaj-02a8c160493e4c6e9aed79b62a2afaa82020-11-24T21:21:52ZengBMCBMC Veterinary Research1746-61482008-12-01415210.1186/1746-6148-4-52Comparative assessment of passive surveillance in disease-free and endemic situation: Example of <it>Brucella melitensis </it>surveillance in Switzerland and in Bosnia and HerzegovinaHaracic SabinaHadorn Daniela CStärk Katharina DC<p>Abstract</p> <p>Background</p> <p>Globalization and subsequent growth in international trade in animals and animal products has increased the importance of international disease reporting. Efficient and reliable surveillance systems are needed in order to document the disease status of a population at a given time. In this context, passive surveillance plays an important role in early warning systems. However, it is not yet routinely integrated in the assessment of disease surveillance systems because different factors like the disease awareness (DA) of people reporting suspect cases influence the detection performance of passive surveillance. In this paper, we used scenario tree methodology in order to evaluate and compare the quality and benefit of abortion testing (ABT) for <it>Brucella melitensis </it>(<it>Bm</it>) between the disease free situation in Switzerland (CH) and a hypothetical disease free situation in Bosnia and Herzegovina (BH), taking into account DA levels assumed for the current endemic situation in BH.</p> <p>Results</p> <p>The structure and input parameters of the scenario tree were identical for CH and BH with the exception of population data in small ruminants and the DA in farmers and veterinarians. The sensitivity analysis of the stochastic scenario tree model showed that the small ruminant population structure and the DA of farmers were important influential parameters with regard to the unit sensitivity of ABT in both CH and BH. The DA of both farmers and veterinarians was assumed to be higher in BH than in CH due to the current endemic situation in BH. Although the same DA cannot necessarily be assumed for the modelled hypothetical disease free situation as for the actual endemic situation, it shows the importance of the higher vigilance of people reporting suspect cases on the probability that an average unit processed in the ABT-component would test positive.</p> <p>Conclusion</p> <p>The actual sensitivity of passive surveillance approaches heavily depends on the context in which they are applied. Scenario tree modelling allows for the evaluation of such passive surveillance system components under assumed disease free situation. Despite data gaps, this is a real opportunity to compare different situations and to explore consequences of changes that could be made.</p> http://www.biomedcentral.com/1746-6148/4/52
collection DOAJ
language English
format Article
sources DOAJ
author Haracic Sabina
Hadorn Daniela C
Stärk Katharina DC
spellingShingle Haracic Sabina
Hadorn Daniela C
Stärk Katharina DC
Comparative assessment of passive surveillance in disease-free and endemic situation: Example of <it>Brucella melitensis </it>surveillance in Switzerland and in Bosnia and Herzegovina
BMC Veterinary Research
author_facet Haracic Sabina
Hadorn Daniela C
Stärk Katharina DC
author_sort Haracic Sabina
title Comparative assessment of passive surveillance in disease-free and endemic situation: Example of <it>Brucella melitensis </it>surveillance in Switzerland and in Bosnia and Herzegovina
title_short Comparative assessment of passive surveillance in disease-free and endemic situation: Example of <it>Brucella melitensis </it>surveillance in Switzerland and in Bosnia and Herzegovina
title_full Comparative assessment of passive surveillance in disease-free and endemic situation: Example of <it>Brucella melitensis </it>surveillance in Switzerland and in Bosnia and Herzegovina
title_fullStr Comparative assessment of passive surveillance in disease-free and endemic situation: Example of <it>Brucella melitensis </it>surveillance in Switzerland and in Bosnia and Herzegovina
title_full_unstemmed Comparative assessment of passive surveillance in disease-free and endemic situation: Example of <it>Brucella melitensis </it>surveillance in Switzerland and in Bosnia and Herzegovina
title_sort comparative assessment of passive surveillance in disease-free and endemic situation: example of <it>brucella melitensis </it>surveillance in switzerland and in bosnia and herzegovina
publisher BMC
series BMC Veterinary Research
issn 1746-6148
publishDate 2008-12-01
description <p>Abstract</p> <p>Background</p> <p>Globalization and subsequent growth in international trade in animals and animal products has increased the importance of international disease reporting. Efficient and reliable surveillance systems are needed in order to document the disease status of a population at a given time. In this context, passive surveillance plays an important role in early warning systems. However, it is not yet routinely integrated in the assessment of disease surveillance systems because different factors like the disease awareness (DA) of people reporting suspect cases influence the detection performance of passive surveillance. In this paper, we used scenario tree methodology in order to evaluate and compare the quality and benefit of abortion testing (ABT) for <it>Brucella melitensis </it>(<it>Bm</it>) between the disease free situation in Switzerland (CH) and a hypothetical disease free situation in Bosnia and Herzegovina (BH), taking into account DA levels assumed for the current endemic situation in BH.</p> <p>Results</p> <p>The structure and input parameters of the scenario tree were identical for CH and BH with the exception of population data in small ruminants and the DA in farmers and veterinarians. The sensitivity analysis of the stochastic scenario tree model showed that the small ruminant population structure and the DA of farmers were important influential parameters with regard to the unit sensitivity of ABT in both CH and BH. The DA of both farmers and veterinarians was assumed to be higher in BH than in CH due to the current endemic situation in BH. Although the same DA cannot necessarily be assumed for the modelled hypothetical disease free situation as for the actual endemic situation, it shows the importance of the higher vigilance of people reporting suspect cases on the probability that an average unit processed in the ABT-component would test positive.</p> <p>Conclusion</p> <p>The actual sensitivity of passive surveillance approaches heavily depends on the context in which they are applied. Scenario tree modelling allows for the evaluation of such passive surveillance system components under assumed disease free situation. Despite data gaps, this is a real opportunity to compare different situations and to explore consequences of changes that could be made.</p>
url http://www.biomedcentral.com/1746-6148/4/52
work_keys_str_mv AT haracicsabina comparativeassessmentofpassivesurveillanceindiseasefreeandendemicsituationexampleofitbrucellamelitensisitsurveillanceinswitzerlandandinbosniaandherzegovina
AT hadorndanielac comparativeassessmentofpassivesurveillanceindiseasefreeandendemicsituationexampleofitbrucellamelitensisitsurveillanceinswitzerlandandinbosniaandherzegovina
AT starkkatharinadc comparativeassessmentofpassivesurveillanceindiseasefreeandendemicsituationexampleofitbrucellamelitensisitsurveillanceinswitzerlandandinbosniaandherzegovina
_version_ 1725997887349850112