Weakly quadratent rings

We completely characterize up to an isomorphism those rings whose elements satisfy the equations $ x^4=x $ or $ x^4=-x $ . Specifically, it is proved that a ring is weakly quadratent if, and only if, it is isomorphic to either K, $ \mathbb {Z}_3 $ , $ \mathbb {Z}_7 $ , $ K\times \mathbb {Z}_3 $ or $...

Full description

Bibliographic Details
Main Author: Peter V. Danchev
Format: Article
Language:English
Published: Taylor & Francis Group 2019-12-01
Series:Journal of Taibah University for Science
Subjects:
Online Access:http://dx.doi.org/10.1080/16583655.2018.1545559

Similar Items