Improved iterative oscillation tests for first-order deviating differential equations

In this paper, improved oscillation conditions are established for the oscillation of all solutions of differential equations with non-monotone deviating arguments and nonnegative coefficients. They lead to a procedure that checks for oscillations by iteratively computing \(\lim \sup\) and \(\lim \i...

Full description

Bibliographic Details
Main Authors: George E. Chatzarakis, Irena Jadlovská
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2018-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol38/3/art/opuscula_math_3815.pdf
Description
Summary:In this paper, improved oscillation conditions are established for the oscillation of all solutions of differential equations with non-monotone deviating arguments and nonnegative coefficients. They lead to a procedure that checks for oscillations by iteratively computing \(\lim \sup\) and \(\lim \inf\) on terms recursively defined on the equation's coefficients and deviating argument. This procedure significantly improves all known oscillation criteria. The results and the improvement achieved over the other known conditions are illustrated by two examples, numerically solved in MATLAB.
ISSN:1232-9274