Validating MODIS above-cloud aerosol optical depth retrieved from “color ratio” algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the “color ratio” method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer...

Full description

Bibliographic Details
Main Authors: H. Jethva, O. Torres, L. Remer, J. Redemann, J. Livingston, S. Dunagan, Y. Shinozuka, M. Kacenelenbogen, M. S. Rosenheimer, R. Spurr
Format: Article
Language:English
Published: Copernicus Publications 2016-10-01
Series:Atmospheric Measurement Techniques
Online Access:http://www.atmos-meas-tech.net/9/5053/2016/amt-9-5053-2016.pdf
Description
Summary:We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the “color ratio” method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference  <  0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about −10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30–50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.
ISSN:1867-1381
1867-8548