Reporting and Performance of Hepatocellular Carcinoma Risk Prediction Models: Based on TRIPOD Statement and Meta-Analysis

Background. The performance of risk prediction models for hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB) was uncertain. The aim of the study was to critically evaluate the reports of transparent and external validation performances of these prediction models based on syste...

Full description

Bibliographic Details
Main Authors: Liuqing Yang, Qiang Wang, Tingting Cui, Jinxin Huang, Hui Jin
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Canadian Journal of Gastroenterology and Hepatology
Online Access:http://dx.doi.org/10.1155/2021/9996358
Description
Summary:Background. The performance of risk prediction models for hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB) was uncertain. The aim of the study was to critically evaluate the reports of transparent and external validation performances of these prediction models based on system review and meta-analysis. Methods. A systematic search of the Web of Science and PubMed was performed for studies published until October 17, 2020. The transparent reporting of a multivariable prediction model for the individual prognosis or diagnosis (TRIPOD) tool was used to critically evaluate the quality of external validation reports for six models (CU-HCC, GAG-HCC, PAGE-B, mPAGE-B, REACH-B, and mREACH-B). The area under the receiver operator characteristic curve (AUC) values was to estimate the pooled external validating performance based on meta-analysis. Subgroup analysis and metaregression were also performed to explore heterogeneity. Results. Our meta-analysis included 22 studies published between 2011 and 2020. The compliance of the included studies to TRIPOD ranged from 59% to 90% (median, 74%; interquartile range (IQR), 70%, 79%). The AUC values of the six models ranged from 0.715 to 0.778. In the antiviral therapy subgroups, the AUC values of mREACH-B, GAG-HCC, and mPAGE-B were 0.785, 0.760, and 0.778, respectively. In the cirrhosis subgroup, all models had poor discrimination performance (AUC < 0.7). Conclusions. A full report of calibration and handling of missing values would contribute to a greater improvement in the quality of external validation reports for CHB-related HCC risk prediction. It was necessary to develop a specific HCC risk prediction model for patients with cirrhosis.
ISSN:2291-2797