Local Antimagic Chromatic Number for Copies of Graphs

An edge labeling of a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo stretchy="false">(</mo><mi>V</mi><mo>,<...

Full description

Bibliographic Details
Main Authors: Martin Bača, Andrea Semaničová-Feňovčíková, Tao-Ming Wang
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/11/1230
id doaj-0235f8ea1c8b4121b6ad38cf0dfdb136
record_format Article
spelling doaj-0235f8ea1c8b4121b6ad38cf0dfdb1362021-06-01T01:24:20ZengMDPI AGMathematics2227-73902021-05-0191230123010.3390/math9111230Local Antimagic Chromatic Number for Copies of GraphsMartin Bača0Andrea Semaničová-Feňovčíková1Tao-Ming Wang2Department of Applied Mathematics and Informatics, Technical University, 042 00 Košice, SlovakiaDepartment of Applied Mathematics and Informatics, Technical University, 042 00 Košice, SlovakiaDepartment of Applied Mathematics, Tunghai University, Taichung 40704, TaiwanAn edge labeling of a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo stretchy="false">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> using every label from the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mo>|</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>|</mo><mo>}</mo></mrow></semantics></math></inline-formula> exactly once is a <i>local antimagic labeling</i> if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any <i>local antimagic labeling</i> induces a proper vertex coloring of <i>G</i> where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of <i>G</i> induced by <i>local antimagic labelings</i> of <i>G</i>. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph.https://www.mdpi.com/2227-7390/9/11/1230<i>local antimagic labeling</i>local antimagic chromatic numbercopies of graphs
collection DOAJ
language English
format Article
sources DOAJ
author Martin Bača
Andrea Semaničová-Feňovčíková
Tao-Ming Wang
spellingShingle Martin Bača
Andrea Semaničová-Feňovčíková
Tao-Ming Wang
Local Antimagic Chromatic Number for Copies of Graphs
Mathematics
<i>local antimagic labeling</i>
local antimagic chromatic number
copies of graphs
author_facet Martin Bača
Andrea Semaničová-Feňovčíková
Tao-Ming Wang
author_sort Martin Bača
title Local Antimagic Chromatic Number for Copies of Graphs
title_short Local Antimagic Chromatic Number for Copies of Graphs
title_full Local Antimagic Chromatic Number for Copies of Graphs
title_fullStr Local Antimagic Chromatic Number for Copies of Graphs
title_full_unstemmed Local Antimagic Chromatic Number for Copies of Graphs
title_sort local antimagic chromatic number for copies of graphs
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-05-01
description An edge labeling of a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo stretchy="false">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> using every label from the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mo>|</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>|</mo><mo>}</mo></mrow></semantics></math></inline-formula> exactly once is a <i>local antimagic labeling</i> if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any <i>local antimagic labeling</i> induces a proper vertex coloring of <i>G</i> where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of <i>G</i> induced by <i>local antimagic labelings</i> of <i>G</i>. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph.
topic <i>local antimagic labeling</i>
local antimagic chromatic number
copies of graphs
url https://www.mdpi.com/2227-7390/9/11/1230
work_keys_str_mv AT martinbaca localantimagicchromaticnumberforcopiesofgraphs
AT andreasemanicovafenovcikova localantimagicchromaticnumberforcopiesofgraphs
AT taomingwang localantimagicchromaticnumberforcopiesofgraphs
_version_ 1721412399568781312