Local Antimagic Chromatic Number for Copies of Graphs
An edge labeling of a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo stretchy="false">(</mo><mi>V</mi><mo>,<...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/11/1230 |
id |
doaj-0235f8ea1c8b4121b6ad38cf0dfdb136 |
---|---|
record_format |
Article |
spelling |
doaj-0235f8ea1c8b4121b6ad38cf0dfdb1362021-06-01T01:24:20ZengMDPI AGMathematics2227-73902021-05-0191230123010.3390/math9111230Local Antimagic Chromatic Number for Copies of GraphsMartin Bača0Andrea Semaničová-Feňovčíková1Tao-Ming Wang2Department of Applied Mathematics and Informatics, Technical University, 042 00 Košice, SlovakiaDepartment of Applied Mathematics and Informatics, Technical University, 042 00 Košice, SlovakiaDepartment of Applied Mathematics, Tunghai University, Taichung 40704, TaiwanAn edge labeling of a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo stretchy="false">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> using every label from the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mo>|</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>|</mo><mo>}</mo></mrow></semantics></math></inline-formula> exactly once is a <i>local antimagic labeling</i> if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any <i>local antimagic labeling</i> induces a proper vertex coloring of <i>G</i> where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of <i>G</i> induced by <i>local antimagic labelings</i> of <i>G</i>. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph.https://www.mdpi.com/2227-7390/9/11/1230<i>local antimagic labeling</i>local antimagic chromatic numbercopies of graphs |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Martin Bača Andrea Semaničová-Feňovčíková Tao-Ming Wang |
spellingShingle |
Martin Bača Andrea Semaničová-Feňovčíková Tao-Ming Wang Local Antimagic Chromatic Number for Copies of Graphs Mathematics <i>local antimagic labeling</i> local antimagic chromatic number copies of graphs |
author_facet |
Martin Bača Andrea Semaničová-Feňovčíková Tao-Ming Wang |
author_sort |
Martin Bača |
title |
Local Antimagic Chromatic Number for Copies of Graphs |
title_short |
Local Antimagic Chromatic Number for Copies of Graphs |
title_full |
Local Antimagic Chromatic Number for Copies of Graphs |
title_fullStr |
Local Antimagic Chromatic Number for Copies of Graphs |
title_full_unstemmed |
Local Antimagic Chromatic Number for Copies of Graphs |
title_sort |
local antimagic chromatic number for copies of graphs |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-05-01 |
description |
An edge labeling of a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo stretchy="false">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> using every label from the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mo>|</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>|</mo><mo>}</mo></mrow></semantics></math></inline-formula> exactly once is a <i>local antimagic labeling</i> if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any <i>local antimagic labeling</i> induces a proper vertex coloring of <i>G</i> where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of <i>G</i> induced by <i>local antimagic labelings</i> of <i>G</i>. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph. |
topic |
<i>local antimagic labeling</i> local antimagic chromatic number copies of graphs |
url |
https://www.mdpi.com/2227-7390/9/11/1230 |
work_keys_str_mv |
AT martinbaca localantimagicchromaticnumberforcopiesofgraphs AT andreasemanicovafenovcikova localantimagicchromaticnumberforcopiesofgraphs AT taomingwang localantimagicchromaticnumberforcopiesofgraphs |
_version_ |
1721412399568781312 |