On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces

We studied the properties of generalized solutions in unbounded domains and the asymptotic behavior of solutions of elliptic boundary value problems at infinity. Moreover, we studied the unique solvability of the mixed Dirichlet⁻Steklov-type and Steklov-type biharmonic problems in the exte...

Full description

Bibliographic Details
Main Author: Hovik Matevossian
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Mathematical and Computational Applications
Subjects:
Online Access:https://www.mdpi.com/2297-8747/24/1/25
id doaj-0214a3779ced492fb23ab7d7f894fcdb
record_format Article
spelling doaj-0214a3779ced492fb23ab7d7f894fcdb2020-11-25T01:51:37ZengMDPI AGMathematical and Computational Applications2297-87472019-02-012412510.3390/mca24010025mca24010025On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted SpacesHovik Matevossian0Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Vavilov str., 40, Moscow 119333, RussiaWe studied the properties of generalized solutions in unbounded domains and the asymptotic behavior of solutions of elliptic boundary value problems at infinity. Moreover, we studied the unique solvability of the mixed Dirichlet&#8315;Steklov-type and Steklov-type biharmonic problems in the exterior of a compact set under the assumption that generalized solutions of these problems has a bounded Dirichlet integral with weight <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mi>a</mi></msup></semantics></math></inline-formula>. Depending on the value of the parameter <i>a</i>, we obtained uniqueness (non-uniqueness) theorems of these problems or present exact formulas for the dimension of the space of solutions.https://www.mdpi.com/2297-8747/24/1/25biharmonic operatormixed Dirichlet–Steklov-type problemSteklov-type problemDirichlet integralweighted spaces
collection DOAJ
language English
format Article
sources DOAJ
author Hovik Matevossian
spellingShingle Hovik Matevossian
On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces
Mathematical and Computational Applications
biharmonic operator
mixed Dirichlet–Steklov-type problem
Steklov-type problem
Dirichlet integral
weighted spaces
author_facet Hovik Matevossian
author_sort Hovik Matevossian
title On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces
title_short On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces
title_full On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces
title_fullStr On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces
title_full_unstemmed On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces
title_sort on the mixed dirichlet–steklov-type and steklov-type biharmonic problems in weighted spaces
publisher MDPI AG
series Mathematical and Computational Applications
issn 2297-8747
publishDate 2019-02-01
description We studied the properties of generalized solutions in unbounded domains and the asymptotic behavior of solutions of elliptic boundary value problems at infinity. Moreover, we studied the unique solvability of the mixed Dirichlet&#8315;Steklov-type and Steklov-type biharmonic problems in the exterior of a compact set under the assumption that generalized solutions of these problems has a bounded Dirichlet integral with weight <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mi>a</mi></msup></semantics></math></inline-formula>. Depending on the value of the parameter <i>a</i>, we obtained uniqueness (non-uniqueness) theorems of these problems or present exact formulas for the dimension of the space of solutions.
topic biharmonic operator
mixed Dirichlet–Steklov-type problem
Steklov-type problem
Dirichlet integral
weighted spaces
url https://www.mdpi.com/2297-8747/24/1/25
work_keys_str_mv AT hovikmatevossian onthemixeddirichletsteklovtypeandsteklovtypebiharmonicproblemsinweightedspaces
_version_ 1724997426551455744