On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces
We studied the properties of generalized solutions in unbounded domains and the asymptotic behavior of solutions of elliptic boundary value problems at infinity. Moreover, we studied the unique solvability of the mixed Dirichlet⁻Steklov-type and Steklov-type biharmonic problems in the exte...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-02-01
|
Series: | Mathematical and Computational Applications |
Subjects: | |
Online Access: | https://www.mdpi.com/2297-8747/24/1/25 |
id |
doaj-0214a3779ced492fb23ab7d7f894fcdb |
---|---|
record_format |
Article |
spelling |
doaj-0214a3779ced492fb23ab7d7f894fcdb2020-11-25T01:51:37ZengMDPI AGMathematical and Computational Applications2297-87472019-02-012412510.3390/mca24010025mca24010025On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted SpacesHovik Matevossian0Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Vavilov str., 40, Moscow 119333, RussiaWe studied the properties of generalized solutions in unbounded domains and the asymptotic behavior of solutions of elliptic boundary value problems at infinity. Moreover, we studied the unique solvability of the mixed Dirichlet⁻Steklov-type and Steklov-type biharmonic problems in the exterior of a compact set under the assumption that generalized solutions of these problems has a bounded Dirichlet integral with weight <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mi>a</mi></msup></semantics></math></inline-formula>. Depending on the value of the parameter <i>a</i>, we obtained uniqueness (non-uniqueness) theorems of these problems or present exact formulas for the dimension of the space of solutions.https://www.mdpi.com/2297-8747/24/1/25biharmonic operatormixed Dirichlet–Steklov-type problemSteklov-type problemDirichlet integralweighted spaces |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hovik Matevossian |
spellingShingle |
Hovik Matevossian On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces Mathematical and Computational Applications biharmonic operator mixed Dirichlet–Steklov-type problem Steklov-type problem Dirichlet integral weighted spaces |
author_facet |
Hovik Matevossian |
author_sort |
Hovik Matevossian |
title |
On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces |
title_short |
On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces |
title_full |
On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces |
title_fullStr |
On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces |
title_full_unstemmed |
On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces |
title_sort |
on the mixed dirichlet–steklov-type and steklov-type biharmonic problems in weighted spaces |
publisher |
MDPI AG |
series |
Mathematical and Computational Applications |
issn |
2297-8747 |
publishDate |
2019-02-01 |
description |
We studied the properties of generalized solutions in unbounded domains and the asymptotic behavior of solutions of elliptic boundary value problems at infinity. Moreover, we studied the unique solvability of the mixed Dirichlet⁻Steklov-type and Steklov-type biharmonic problems in the exterior of a compact set under the assumption that generalized solutions of these problems has a bounded Dirichlet integral with weight <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mi>a</mi></msup></semantics></math></inline-formula>. Depending on the value of the parameter <i>a</i>, we obtained uniqueness (non-uniqueness) theorems of these problems or present exact formulas for the dimension of the space of solutions. |
topic |
biharmonic operator mixed Dirichlet–Steklov-type problem Steklov-type problem Dirichlet integral weighted spaces |
url |
https://www.mdpi.com/2297-8747/24/1/25 |
work_keys_str_mv |
AT hovikmatevossian onthemixeddirichletsteklovtypeandsteklovtypebiharmonicproblemsinweightedspaces |
_version_ |
1724997426551455744 |