Energy Harvester Based on the Synchronization Phenomenon of a Circular Cylinder

A concept of generating power from a circular cylinder undergoing vortex-induced vibration (VIV) was investigated. Two lead zirconate titanate (PZT) beams which had high power density were installed on the cylinder. A theoretical model has been presented to describe the electromechanical coupling of...

Full description

Bibliographic Details
Main Authors: Junlei Wang, Jingyu Ran, Zhien Zhang
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2014/567357
Description
Summary:A concept of generating power from a circular cylinder undergoing vortex-induced vibration (VIV) was investigated. Two lead zirconate titanate (PZT) beams which had high power density were installed on the cylinder. A theoretical model has been presented to describe the electromechanical coupling of the open-circuit voltage output and the vibration amplitudes based on a second-order nonlinear Van der pol equation and Gauss law. A numerical computation was applied to measure the capacity of the power generating system. The lift and drag coefficient and the vortex shedding frequency were obtained to verify how the nondimensional parameter reduced velocity Ur affects the fluid field. Meanwhile, a single-degree of freedom system has been added to describe the VIV, presynchronization, and synchronization together with postsynchronization regimes of oscillating frequencies. And the amplitudes of the vibration have been obtained. Finally, the vibrational amplitudes and the voltage output could go up to a high level in the synchronization region. The maximum value of the voltage output and the corresponding reduced velocity Ur were 8.42 V and 5.6, respectively.
ISSN:1024-123X
1563-5147