Group Geometrical Axioms for Magic States of Quantum Computing
Let <i>H</i> be a nontrivial subgroup of index <i>d</i> of a free group <i>G</i> and <i>N</i> be the normal closure of <i>H</i> in <i>G</i>. The coset organization in a subgroup <i>H</i> of <i>G</i> provi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-10-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/10/948 |
id |
doaj-0200b6a1334a4ffc8a087763948a8c30 |
---|---|
record_format |
Article |
spelling |
doaj-0200b6a1334a4ffc8a087763948a8c302020-11-25T01:18:38ZengMDPI AGMathematics2227-73902019-10-0171094810.3390/math7100948math7100948Group Geometrical Axioms for Magic States of Quantum ComputingMichel Planat0Raymond Aschheim1Marcelo M. Amaral2Klee Irwin3Institut FEMTO-ST CNRS UMR 6174, Université de Bourgogne/Franche-Comté, 15 B Avenue des Montboucons, F-25044 Besançon, FranceQuantum Gravity Research, Los Angeles, CA 90290, USAQuantum Gravity Research, Los Angeles, CA 90290, USAQuantum Gravity Research, Los Angeles, CA 90290, USALet <i>H</i> be a nontrivial subgroup of index <i>d</i> of a free group <i>G</i> and <i>N</i> be the normal closure of <i>H</i> in <i>G</i>. The coset organization in a subgroup <i>H</i> of <i>G</i> provides a group <i>P</i> of permutation gates whose common eigenstates are either stabilizer states of the Pauli group or magic states for universal quantum computing. A subset of magic states consists of states associated to minimal informationally complete measurements, called MIC states. It is shown that, in most cases, the existence of a MIC state entails the two conditions (i) <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mi>G</mi> </mrow> </semantics> </math> </inline-formula> and (ii) no geometry (a triple of cosets cannot produce equal pairwise stabilizer subgroups) or that these conditions are both not satisfied. Our claim is verified by defining the low dimensional MIC states from subgroups of the fundamental group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <msub> <mi>π</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>M</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> of some manifolds encountered in our recent papers, e.g., the 3-manifolds attached to the trefoil knot and the figure-eight knot, and the 4-manifolds defined by 0-surgery of them. Exceptions to the aforementioned rule are classified in terms of geometric contextuality (which occurs when cosets on a line of the geometry do not all mutually commute).https://www.mdpi.com/2227-7390/7/10/948quantum computingfree group theorycoxeter-todd algorithmmagic statesinformationally complete quantum measurementds3- and 4-manifoldsfinite geometries |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Michel Planat Raymond Aschheim Marcelo M. Amaral Klee Irwin |
spellingShingle |
Michel Planat Raymond Aschheim Marcelo M. Amaral Klee Irwin Group Geometrical Axioms for Magic States of Quantum Computing Mathematics quantum computing free group theory coxeter-todd algorithm magic states informationally complete quantum measurementds 3- and 4-manifolds finite geometries |
author_facet |
Michel Planat Raymond Aschheim Marcelo M. Amaral Klee Irwin |
author_sort |
Michel Planat |
title |
Group Geometrical Axioms for Magic States of Quantum Computing |
title_short |
Group Geometrical Axioms for Magic States of Quantum Computing |
title_full |
Group Geometrical Axioms for Magic States of Quantum Computing |
title_fullStr |
Group Geometrical Axioms for Magic States of Quantum Computing |
title_full_unstemmed |
Group Geometrical Axioms for Magic States of Quantum Computing |
title_sort |
group geometrical axioms for magic states of quantum computing |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2019-10-01 |
description |
Let <i>H</i> be a nontrivial subgroup of index <i>d</i> of a free group <i>G</i> and <i>N</i> be the normal closure of <i>H</i> in <i>G</i>. The coset organization in a subgroup <i>H</i> of <i>G</i> provides a group <i>P</i> of permutation gates whose common eigenstates are either stabilizer states of the Pauli group or magic states for universal quantum computing. A subset of magic states consists of states associated to minimal informationally complete measurements, called MIC states. It is shown that, in most cases, the existence of a MIC state entails the two conditions (i) <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mi>G</mi> </mrow> </semantics> </math> </inline-formula> and (ii) no geometry (a triple of cosets cannot produce equal pairwise stabilizer subgroups) or that these conditions are both not satisfied. Our claim is verified by defining the low dimensional MIC states from subgroups of the fundamental group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <msub> <mi>π</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>M</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> of some manifolds encountered in our recent papers, e.g., the 3-manifolds attached to the trefoil knot and the figure-eight knot, and the 4-manifolds defined by 0-surgery of them. Exceptions to the aforementioned rule are classified in terms of geometric contextuality (which occurs when cosets on a line of the geometry do not all mutually commute). |
topic |
quantum computing free group theory coxeter-todd algorithm magic states informationally complete quantum measurementds 3- and 4-manifolds finite geometries |
url |
https://www.mdpi.com/2227-7390/7/10/948 |
work_keys_str_mv |
AT michelplanat groupgeometricalaxiomsformagicstatesofquantumcomputing AT raymondaschheim groupgeometricalaxiomsformagicstatesofquantumcomputing AT marcelomamaral groupgeometricalaxiomsformagicstatesofquantumcomputing AT kleeirwin groupgeometricalaxiomsformagicstatesofquantumcomputing |
_version_ |
1725141412305960960 |