Group Geometrical Axioms for Magic States of Quantum Computing

Let <i>H</i> be a nontrivial subgroup of index <i>d</i> of a free group <i>G</i> and <i>N</i> be the normal closure of <i>H</i> in <i>G</i>. The coset organization in a subgroup <i>H</i> of <i>G</i> provi...

Full description

Bibliographic Details
Main Authors: Michel Planat, Raymond Aschheim, Marcelo M. Amaral, Klee Irwin
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/10/948
id doaj-0200b6a1334a4ffc8a087763948a8c30
record_format Article
spelling doaj-0200b6a1334a4ffc8a087763948a8c302020-11-25T01:18:38ZengMDPI AGMathematics2227-73902019-10-0171094810.3390/math7100948math7100948Group Geometrical Axioms for Magic States of Quantum ComputingMichel Planat0Raymond Aschheim1Marcelo M. Amaral2Klee Irwin3Institut FEMTO-ST CNRS UMR 6174, Université de Bourgogne/Franche-Comté, 15 B Avenue des Montboucons, F-25044 Besançon, FranceQuantum Gravity Research, Los Angeles, CA 90290, USAQuantum Gravity Research, Los Angeles, CA 90290, USAQuantum Gravity Research, Los Angeles, CA 90290, USALet <i>H</i> be a nontrivial subgroup of index <i>d</i> of a free group <i>G</i> and <i>N</i> be the normal closure of <i>H</i> in <i>G</i>. The coset organization in a subgroup <i>H</i> of <i>G</i> provides a group <i>P</i> of permutation gates whose common eigenstates are either stabilizer states of the Pauli group or magic states for universal quantum computing. A subset of magic states consists of states associated to minimal informationally complete measurements, called MIC states. It is shown that, in most cases, the existence of a MIC state entails the two conditions (i) <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mi>G</mi> </mrow> </semantics> </math> </inline-formula> and (ii) no geometry (a triple of cosets cannot produce equal pairwise stabilizer subgroups) or that these conditions are both not satisfied. Our claim is verified by defining the low dimensional MIC states from subgroups of the fundamental group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>M</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> of some manifolds encountered in our recent papers, e.g., the 3-manifolds attached to the trefoil knot and the figure-eight knot, and the 4-manifolds defined by 0-surgery of them. Exceptions to the aforementioned rule are classified in terms of geometric contextuality (which occurs when cosets on a line of the geometry do not all mutually commute).https://www.mdpi.com/2227-7390/7/10/948quantum computingfree group theorycoxeter-todd algorithmmagic statesinformationally complete quantum measurementds3- and 4-manifoldsfinite geometries
collection DOAJ
language English
format Article
sources DOAJ
author Michel Planat
Raymond Aschheim
Marcelo M. Amaral
Klee Irwin
spellingShingle Michel Planat
Raymond Aschheim
Marcelo M. Amaral
Klee Irwin
Group Geometrical Axioms for Magic States of Quantum Computing
Mathematics
quantum computing
free group theory
coxeter-todd algorithm
magic states
informationally complete quantum measurementds
3- and 4-manifolds
finite geometries
author_facet Michel Planat
Raymond Aschheim
Marcelo M. Amaral
Klee Irwin
author_sort Michel Planat
title Group Geometrical Axioms for Magic States of Quantum Computing
title_short Group Geometrical Axioms for Magic States of Quantum Computing
title_full Group Geometrical Axioms for Magic States of Quantum Computing
title_fullStr Group Geometrical Axioms for Magic States of Quantum Computing
title_full_unstemmed Group Geometrical Axioms for Magic States of Quantum Computing
title_sort group geometrical axioms for magic states of quantum computing
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-10-01
description Let <i>H</i> be a nontrivial subgroup of index <i>d</i> of a free group <i>G</i> and <i>N</i> be the normal closure of <i>H</i> in <i>G</i>. The coset organization in a subgroup <i>H</i> of <i>G</i> provides a group <i>P</i> of permutation gates whose common eigenstates are either stabilizer states of the Pauli group or magic states for universal quantum computing. A subset of magic states consists of states associated to minimal informationally complete measurements, called MIC states. It is shown that, in most cases, the existence of a MIC state entails the two conditions (i) <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mi>G</mi> </mrow> </semantics> </math> </inline-formula> and (ii) no geometry (a triple of cosets cannot produce equal pairwise stabilizer subgroups) or that these conditions are both not satisfied. Our claim is verified by defining the low dimensional MIC states from subgroups of the fundamental group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>M</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> of some manifolds encountered in our recent papers, e.g., the 3-manifolds attached to the trefoil knot and the figure-eight knot, and the 4-manifolds defined by 0-surgery of them. Exceptions to the aforementioned rule are classified in terms of geometric contextuality (which occurs when cosets on a line of the geometry do not all mutually commute).
topic quantum computing
free group theory
coxeter-todd algorithm
magic states
informationally complete quantum measurementds
3- and 4-manifolds
finite geometries
url https://www.mdpi.com/2227-7390/7/10/948
work_keys_str_mv AT michelplanat groupgeometricalaxiomsformagicstatesofquantumcomputing
AT raymondaschheim groupgeometricalaxiomsformagicstatesofquantumcomputing
AT marcelomamaral groupgeometricalaxiomsformagicstatesofquantumcomputing
AT kleeirwin groupgeometricalaxiomsformagicstatesofquantumcomputing
_version_ 1725141412305960960