Growth and Tissue Elemental Composition Response of Butterhead Lettuce (Lactuca sativa, cv. Flandria) to Hydroponic Conditions at Different pH and Alkalinity

Biomass and tissue elemental differences were quantified for lettuce grown in deep-water conventional hydroponic conditions at two pH and alkalinity conditions. Nutrient solutions were created using inorganic salts and either reverse osmosis (RO) water or municipal water with high alkalinity. Three...

Full description

Bibliographic Details
Main Authors: Tyler S. Anderson, Miguel R. Martini, David de Villiers, Michael B. Timmons
Format: Article
Language:English
Published: MDPI AG 2017-07-01
Series:Horticulturae
Subjects:
pH
Online Access:https://www.mdpi.com/2311-7524/3/3/41
Description
Summary:Biomass and tissue elemental differences were quantified for lettuce grown in deep-water conventional hydroponic conditions at two pH and alkalinity conditions. Nutrient solutions were created using inorganic salts and either reverse osmosis (RO) water or municipal water with high alkalinity. Three treatments were evaluated: (a) nutrient solution created with reverse osmosis (RO) water and maintained at pH 5.8 (H5); (b) same as H5 but maintained at pH 7.0 (H7); and (c) nutrient solution created using municipal water and maintained at pH 7.0, referred to as HA7. Averaged across three trials, the HA7 and H7 treatments produced 26% less shoot fresh weight (FW) than the H5 treatment with an 18% reduction in dry weight (DW). The H5 treatment had the least biomass in root FW and DW. In tissue elemental analyses, both the pH 7.0 treatments showed lower concentrations than H5 in Cu, N, Mo, and Sr, and increased concentrations in Ba, Mg, Na, and Zn. There were no differences in Al, C, Ca, Fe, K, Mn, Ni, P, S, and Si concentrations among treatments (p = 0.05). The results from this experiment can be used to isolate the effects of pH and alkalinity in aquaponic conditions where pH and alkalinity will mimic HA7 conditions.
ISSN:2311-7524