The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology

This study provides the experimental and statistical modeling in order to increase the performance of ultra high performance concrete (UHPC) within reducing the cement consumption. Also showing the effect of waste glass powder and nano silica fume on mechanical, rheological, and shrinkage properties...

Full description

Bibliographic Details
Main Authors: Mohammad A. Mosaberpanah, Ozgur Eren, Amir R. Tarassoly
Format: Article
Language:English
Published: Elsevier 2019-01-01
Series:Journal of Materials Research and Technology
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785418302266
Description
Summary:This study provides the experimental and statistical modeling in order to increase the performance of ultra high performance concrete (UHPC) within reducing the cement consumption. Also showing the effect of waste glass powder and nano silica fume on mechanical, rheological, and shrinkage properties. For this purpose, a fraction of binder was added with the range of 0–5% of nano-silica fume and fraction of Portland cement were substituted with 0–20% of waste glass powder, the maximum particle size of 63 μm. The mechanical properties were obtained by testing on 28 days compressive strength. The rheological property found by doing the flow test. Numbers and randomization orders of experiments were designed by central composite face-centered (CFC) and modeled by response surface methodology (RSM). The validity of models was controlled by analysis of variance (ANOVA). The study showed adding nano-silica and waste glass powder and especially their interaction improved the properties of UHPC. Keywords: Response surface methodology, Ultra high performance concrete, Compressive strength, Flowability, Drying shrinkage, Central composite method, Waste glass powder, Nano-silica
ISSN:2238-7854