Energy-Efficient Hybrid Precoding Scheme Based on Antenna Selection Technology in Massive Multiple-Input Multiple-Output Systems

Hybrid precoding is a promising technology for massive multiple-input multiple-output (MIMO) systems. It can reduce the number of radio frequency (RF) chains. However, the power consumption is still very high owing to the large-scale antenna array. In this paper, we propose an energy-efficient preco...

Full description

Bibliographic Details
Main Authors: Jian Jun Ding, Jing Jiang
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2019/4196513
Description
Summary:Hybrid precoding is a promising technology for massive multiple-input multiple-output (MIMO) systems. It can reduce the number of radio frequency (RF) chains. However, the power consumption is still very high owing to the large-scale antenna array. In this paper, we propose an energy-efficient precoding scheme based on antenna selection technology. The precoding scheme greatly increases the energy efficiency (EE) of the system. In the first step, we derive an exact closed-form expression of EE. Meanwhile, we further study the relationship between the number of transmit antennas and EE on the basis of the exact closed-form expression of EE. We prove that there exists an optimal value. When the number of transmit antennas equals to the value, the EE of the system can reach the maximum by a proper hybrid precoding scheme. Then, we propose an antenna selection algorithm to select antennas from the transmit antennas. And the number of selected antennas equals to the optimal value. Subsequently, we design the analog precoder based on a codebook to maximize the equivalent channel gain. At last, we further improve the EE by baseband digital precoding. The precoding algorithm we proposed offers a compromise between spectral efficiency (SE) and EE in millimeter wave (mmWave) massive MIMO systems. Finally, simulation results validate our theoretical analysis and show that a substantial EE gain can be obtained over the precoding scheme we proposed without large performance loss.
ISSN:1687-5869
1687-5877