A Multivariate Balanced Initial Ensemble Generation Approach for an Atmospheric General Circulation Model

Based on the multivariate empirical orthogonal function (MEOF) method, a multivariate balanced initial ensemble generation method was applied to the ensemble data assimilation scheme. The initial ensembles were generated with a reasonable consideration of the physical relationships between different...

Full description

Bibliographic Details
Main Authors: Juan Du, Fei Zheng, He Zhang, Jiang Zhu
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/2/122
Description
Summary:Based on the multivariate empirical orthogonal function (MEOF) method, a multivariate balanced initial ensemble generation method was applied to the ensemble data assimilation scheme. The initial ensembles were generated with a reasonable consideration of the physical relationships between different model variables. The spatial distribution derived from the MEOF analysis is combined with the 3-D random perturbation to generate a balanced initial perturbation field. The Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme was established for an atmospheric general circulation model. Ensemble data assimilation experiments using different initial ensemble generation methods, spatially random and MEOF-based balanced, are performed using realistic atmospheric observations. It is shown that the ensembles integrated from the balanced initial ensembles maintain a much more reasonable spread and a more reliable horizontal correlation compared with the historical model results than those from the randomly perturbed initial ensembles. The model predictions were also improved by adopting the MEOF-based balanced initial ensembles.
ISSN:2073-4441