Some New Results Concerning the Classical Bernstein Cubature Formula

In this article, we present a solution to the approximation problem of the volume obtained by the integration of a bivariate function on any finite interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow>...

Full description

Bibliographic Details
Main Author: Dan Miclăuş
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/6/1068
id doaj-01aab401feb142e8b6cc06f6769f473c
record_format Article
spelling doaj-01aab401feb142e8b6cc06f6769f473c2021-07-01T00:13:36ZengMDPI AGSymmetry2073-89942021-06-01131068106810.3390/sym13061068Some New Results Concerning the Classical Bernstein Cubature FormulaDan Miclăuş0Department of Mathematics and Computer Science, Technical University of Cluj-Napoca, North University Center at Baia Mare, Victoriei 76, 430122 Baia Mare, RomaniaIn this article, we present a solution to the approximation problem of the volume obtained by the integration of a bivariate function on any finite interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>×</mo><mo>[</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>]</mo></mrow></semantics></math></inline-formula>, as well as on any symmetrical finite interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo><mo>×</mo><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo></mrow></semantics></math></inline-formula> when a double integral cannot be computed exactly. The approximation of various double integrals is done by cubature formulas. We propose a cubature formula constructed on the base of the classical bivariate Bernstein operator. As a valuable tool to approximate any volume resulted by integration of a bivariate function, we use the classical Bernstein cubature formula. Numerical examples are given to increase the validity of the theoretical aspects.https://www.mdpi.com/2073-8994/13/6/1068Bernstein operatorquadrature formulacubature formulaupper bound estimation
collection DOAJ
language English
format Article
sources DOAJ
author Dan Miclăuş
spellingShingle Dan Miclăuş
Some New Results Concerning the Classical Bernstein Cubature Formula
Symmetry
Bernstein operator
quadrature formula
cubature formula
upper bound estimation
author_facet Dan Miclăuş
author_sort Dan Miclăuş
title Some New Results Concerning the Classical Bernstein Cubature Formula
title_short Some New Results Concerning the Classical Bernstein Cubature Formula
title_full Some New Results Concerning the Classical Bernstein Cubature Formula
title_fullStr Some New Results Concerning the Classical Bernstein Cubature Formula
title_full_unstemmed Some New Results Concerning the Classical Bernstein Cubature Formula
title_sort some new results concerning the classical bernstein cubature formula
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-06-01
description In this article, we present a solution to the approximation problem of the volume obtained by the integration of a bivariate function on any finite interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>×</mo><mo>[</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>]</mo></mrow></semantics></math></inline-formula>, as well as on any symmetrical finite interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo><mo>×</mo><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo></mrow></semantics></math></inline-formula> when a double integral cannot be computed exactly. The approximation of various double integrals is done by cubature formulas. We propose a cubature formula constructed on the base of the classical bivariate Bernstein operator. As a valuable tool to approximate any volume resulted by integration of a bivariate function, we use the classical Bernstein cubature formula. Numerical examples are given to increase the validity of the theoretical aspects.
topic Bernstein operator
quadrature formula
cubature formula
upper bound estimation
url https://www.mdpi.com/2073-8994/13/6/1068
work_keys_str_mv AT danmiclaus somenewresultsconcerningtheclassicalbernsteincubatureformula
_version_ 1721349162910351360