Some New Results Concerning the Classical Bernstein Cubature Formula
In this article, we present a solution to the approximation problem of the volume obtained by the integration of a bivariate function on any finite interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow>...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/6/1068 |
id |
doaj-01aab401feb142e8b6cc06f6769f473c |
---|---|
record_format |
Article |
spelling |
doaj-01aab401feb142e8b6cc06f6769f473c2021-07-01T00:13:36ZengMDPI AGSymmetry2073-89942021-06-01131068106810.3390/sym13061068Some New Results Concerning the Classical Bernstein Cubature FormulaDan Miclăuş0Department of Mathematics and Computer Science, Technical University of Cluj-Napoca, North University Center at Baia Mare, Victoriei 76, 430122 Baia Mare, RomaniaIn this article, we present a solution to the approximation problem of the volume obtained by the integration of a bivariate function on any finite interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>×</mo><mo>[</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>]</mo></mrow></semantics></math></inline-formula>, as well as on any symmetrical finite interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo><mo>×</mo><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo></mrow></semantics></math></inline-formula> when a double integral cannot be computed exactly. The approximation of various double integrals is done by cubature formulas. We propose a cubature formula constructed on the base of the classical bivariate Bernstein operator. As a valuable tool to approximate any volume resulted by integration of a bivariate function, we use the classical Bernstein cubature formula. Numerical examples are given to increase the validity of the theoretical aspects.https://www.mdpi.com/2073-8994/13/6/1068Bernstein operatorquadrature formulacubature formulaupper bound estimation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dan Miclăuş |
spellingShingle |
Dan Miclăuş Some New Results Concerning the Classical Bernstein Cubature Formula Symmetry Bernstein operator quadrature formula cubature formula upper bound estimation |
author_facet |
Dan Miclăuş |
author_sort |
Dan Miclăuş |
title |
Some New Results Concerning the Classical Bernstein Cubature Formula |
title_short |
Some New Results Concerning the Classical Bernstein Cubature Formula |
title_full |
Some New Results Concerning the Classical Bernstein Cubature Formula |
title_fullStr |
Some New Results Concerning the Classical Bernstein Cubature Formula |
title_full_unstemmed |
Some New Results Concerning the Classical Bernstein Cubature Formula |
title_sort |
some new results concerning the classical bernstein cubature formula |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-06-01 |
description |
In this article, we present a solution to the approximation problem of the volume obtained by the integration of a bivariate function on any finite interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>×</mo><mo>[</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>]</mo></mrow></semantics></math></inline-formula>, as well as on any symmetrical finite interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo><mo>×</mo><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo></mrow></semantics></math></inline-formula> when a double integral cannot be computed exactly. The approximation of various double integrals is done by cubature formulas. We propose a cubature formula constructed on the base of the classical bivariate Bernstein operator. As a valuable tool to approximate any volume resulted by integration of a bivariate function, we use the classical Bernstein cubature formula. Numerical examples are given to increase the validity of the theoretical aspects. |
topic |
Bernstein operator quadrature formula cubature formula upper bound estimation |
url |
https://www.mdpi.com/2073-8994/13/6/1068 |
work_keys_str_mv |
AT danmiclaus somenewresultsconcerningtheclassicalbernsteincubatureformula |
_version_ |
1721349162910351360 |