Transcranial red and near infrared light transmission in a cadaveric model.

BACKGROUND AND OBJECTIVE: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared lig...

Full description

Bibliographic Details
Main Authors: Jared R Jagdeo, Lauren E Adams, Neil I Brody, Daniel M Siegel
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3471828?pdf=render
id doaj-016f59aa9b8047e18792be01d1ad40cb
record_format Article
spelling doaj-016f59aa9b8047e18792be01d1ad40cb2020-11-25T02:42:37ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-01710e4746010.1371/journal.pone.0047460Transcranial red and near infrared light transmission in a cadaveric model.Jared R JagdeoLauren E AdamsNeil I BrodyDaniel M SiegelBACKGROUND AND OBJECTIVE: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model. STUDY DESIGN/MATERIALS AND METHODS: To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm. RESULTS: Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions. CONCLUSION: These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue.http://europepmc.org/articles/PMC3471828?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Jared R Jagdeo
Lauren E Adams
Neil I Brody
Daniel M Siegel
spellingShingle Jared R Jagdeo
Lauren E Adams
Neil I Brody
Daniel M Siegel
Transcranial red and near infrared light transmission in a cadaveric model.
PLoS ONE
author_facet Jared R Jagdeo
Lauren E Adams
Neil I Brody
Daniel M Siegel
author_sort Jared R Jagdeo
title Transcranial red and near infrared light transmission in a cadaveric model.
title_short Transcranial red and near infrared light transmission in a cadaveric model.
title_full Transcranial red and near infrared light transmission in a cadaveric model.
title_fullStr Transcranial red and near infrared light transmission in a cadaveric model.
title_full_unstemmed Transcranial red and near infrared light transmission in a cadaveric model.
title_sort transcranial red and near infrared light transmission in a cadaveric model.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2012-01-01
description BACKGROUND AND OBJECTIVE: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model. STUDY DESIGN/MATERIALS AND METHODS: To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm. RESULTS: Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions. CONCLUSION: These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue.
url http://europepmc.org/articles/PMC3471828?pdf=render
work_keys_str_mv AT jaredrjagdeo transcranialredandnearinfraredlighttransmissioninacadavericmodel
AT laureneadams transcranialredandnearinfraredlighttransmissioninacadavericmodel
AT neilibrody transcranialredandnearinfraredlighttransmissioninacadavericmodel
AT danielmsiegel transcranialredandnearinfraredlighttransmissioninacadavericmodel
_version_ 1724772622763294720