Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime
A digital optical method "DOM-Vis" was developed to measure atmospheric visibility. In this method, two digital pictures were taken of the same target at two different distances along the same straight line. The pictures were analyzed to determine the optical contrasts between the target a...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2013-08-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | http://www.atmos-meas-tech.net/6/2121/2013/amt-6-2121-2013.pdf |
id |
doaj-016bf30661af4e17bc0dbe5adb53be41 |
---|---|
record_format |
Article |
spelling |
doaj-016bf30661af4e17bc0dbe5adb53be412020-11-24T23:26:35ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482013-08-01682121213010.5194/amt-6-2121-2013Quantification of atmospheric visibility with dual digital cameras during daytime and nighttimeK. DuK. WangP. ShiY. WangA digital optical method "DOM-Vis" was developed to measure atmospheric visibility. In this method, two digital pictures were taken of the same target at two different distances along the same straight line. The pictures were analyzed to determine the optical contrasts between the target and its sky background and, subsequently, visibility is calculated. A light transfer scheme for DOM-Vis was delineated, based upon which algorithms were developed for both daytime and nighttime scenarios. A series of field tests were carried out under different weather and meteorological conditions to study the impacts of such operational parameters as exposure, optical zoom, distance between the two camera locations, and distance of the target. This method was validated by comparing the DOM-Vis results with those measured using a co-located Vaisala<sup>®</sup> visibility meter. The visibility under which this study was carried out ranged from 1 to 20 km. This digital-photography-based method possesses a number of advantages compared with traditional methods. Pre-calibration of the detector with a visibility meter is not required. In addition, the application of DOM-Vis is independent of several factors like the exact distance of the target and several camera setting parameters. These features make DOM-Vis more adaptive under a variety of field conditions.http://www.atmos-meas-tech.net/6/2121/2013/amt-6-2121-2013.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
K. Du K. Wang P. Shi Y. Wang |
spellingShingle |
K. Du K. Wang P. Shi Y. Wang Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime Atmospheric Measurement Techniques |
author_facet |
K. Du K. Wang P. Shi Y. Wang |
author_sort |
K. Du |
title |
Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime |
title_short |
Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime |
title_full |
Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime |
title_fullStr |
Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime |
title_full_unstemmed |
Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime |
title_sort |
quantification of atmospheric visibility with dual digital cameras during daytime and nighttime |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2013-08-01 |
description |
A digital optical method "DOM-Vis" was developed to measure atmospheric visibility. In this method, two digital pictures were taken of the same target at two different distances along the same straight line. The pictures were analyzed to determine the optical contrasts between the target and its sky background and, subsequently, visibility is calculated. A light transfer scheme for DOM-Vis was delineated, based upon which algorithms were developed for both daytime and nighttime scenarios. A series of field tests were carried out under different weather and meteorological conditions to study the impacts of such operational parameters as exposure, optical zoom, distance between the two camera locations, and distance of the target. This method was validated by comparing the DOM-Vis results with those measured using a co-located Vaisala<sup>®</sup> visibility meter. The visibility under which this study was carried out ranged from 1 to 20 km. This digital-photography-based method possesses a number of advantages compared with traditional methods. Pre-calibration of the detector with a visibility meter is not required. In addition, the application of DOM-Vis is independent of several factors like the exact distance of the target and several camera setting parameters. These features make DOM-Vis more adaptive under a variety of field conditions. |
url |
http://www.atmos-meas-tech.net/6/2121/2013/amt-6-2121-2013.pdf |
work_keys_str_mv |
AT kdu quantificationofatmosphericvisibilitywithdualdigitalcamerasduringdaytimeandnighttime AT kwang quantificationofatmosphericvisibilitywithdualdigitalcamerasduringdaytimeandnighttime AT pshi quantificationofatmosphericvisibilitywithdualdigitalcamerasduringdaytimeandnighttime AT ywang quantificationofatmosphericvisibilitywithdualdigitalcamerasduringdaytimeandnighttime |
_version_ |
1725554435582590976 |