Enhanced Decision Support Systems in Intensive Care Unit Based on Intuitionistic Fuzzy Sets
In areas of medical diagnosis and decision-making, several uncertainty and ambiguity shrouded situations are most often imposed. In this regard, one may well assume that intuitionistic fuzzy sets (IFS) should stand as a potent technique useful for demystifying associated with the real healthcare dec...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Advances in Fuzzy Systems |
Online Access: | http://dx.doi.org/10.1155/2017/7371634 |
Summary: | In areas of medical diagnosis and decision-making, several uncertainty and ambiguity shrouded situations are most often imposed. In this regard, one may well assume that intuitionistic fuzzy sets (IFS) should stand as a potent technique useful for demystifying associated with the real healthcare decision-making situations. To this end, we are developing a prototype model helpful for detecting the patients risk degree in Intensive Care Unit (ICU). Based on the intuitionistic fuzzy sets, dubbed Medical Intuitionistic Fuzzy Expert Decision Support System (MIFEDSS), the shown work has its origins in the Modified Early Warning Score (MEWS) standard. It is worth noting that the proposed prototype effectiveness validation is associated through a real case study test at the Polyclinic ESSALEMA cited in Sfax, Tunisia. This paper does actually provide some practical initial results concerning the system as carried out in real life situations. Indeed, the proposed system turns out to prove that the MIFEDSS does actually display an imposing capability for an established handily ICU related uncertainty issues. The performance of the prototypes is compared with the MEWS standard which exposed that the IFS application appears to perform highly better in deferring accuracy than the expert MEWS score with higher degrees of sensitivity and specificity being recorded. |
---|---|
ISSN: | 1687-7101 1687-711X |