Multiplicative Decomposition of Heterogeneity in Mixtures of Continuous Distributions

A system’s heterogeneity (<i>diversity</i>) is the effective size of its event space, and can be quantified using the Rényi family of indices (also known as Hill numbers in ecology or Hannah–Kay indices in economics), which are indexed by an elasticity parameter <inline-formula><...

Full description

Bibliographic Details
Main Authors: Abraham Nunes, Martin Alda, Thomas Trappenberg
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/8/858
id doaj-0158c954572f4a89b242e4aca3f1c11b
record_format Article
spelling doaj-0158c954572f4a89b242e4aca3f1c11b2020-11-25T03:12:27ZengMDPI AGEntropy1099-43002020-08-012285885810.3390/e22080858Multiplicative Decomposition of Heterogeneity in Mixtures of Continuous DistributionsAbraham Nunes0Martin Alda1Thomas Trappenberg2Department of Psychiatry, Dalhousie University, Halifax, NS B3H 2E2, CanadaDepartment of Psychiatry, Dalhousie University, Halifax, NS B3H 2E2, CanadaFaculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, CanadaA system’s heterogeneity (<i>diversity</i>) is the effective size of its event space, and can be quantified using the Rényi family of indices (also known as Hill numbers in ecology or Hannah–Kay indices in economics), which are indexed by an elasticity parameter <inline-formula><math display="inline"><semantics><mrow><mi>q</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Under these indices, the heterogeneity of a composite system (the <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-heterogeneity) is decomposable into heterogeneity arising from variation <i>within</i> and <i>between</i> component subsystems (the <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>- and <inline-formula><math display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-heterogeneity, respectively). Since the average heterogeneity of a component subsystem should not be greater than that of the pooled system, we require that <inline-formula><math display="inline"><semantics><mrow><mi>γ</mi><mo>≥</mo><mi>α</mi></mrow></semantics></math></inline-formula>. There exists a multiplicative decomposition for Rényi heterogeneity of composite systems with discrete event spaces, but less attention has been paid to decomposition in the continuous setting. We therefore describe multiplicative decomposition of the Rényi heterogeneity for continuous mixture distributions under parametric and non-parametric pooling assumptions. Under non-parametric pooling, the <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-heterogeneity must often be estimated numerically, but the multiplicative decomposition holds such that <inline-formula><math display="inline"><semantics><mrow><mi>γ</mi><mo>≥</mo><mi>α</mi></mrow></semantics></math></inline-formula> for <inline-formula><math display="inline"><semantics><mrow><mi>q</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. Conversely, under parametric pooling, <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-heterogeneity can be computed efficiently in closed-form, but the <inline-formula><math display="inline"><semantics><mrow><mi>γ</mi><mo>≥</mo><mi>α</mi></mrow></semantics></math></inline-formula> condition holds reliably only at <inline-formula><math display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Our findings will further contribute to heterogeneity measurement in continuous systems.https://www.mdpi.com/1099-4300/22/8/858heterogeneitydiversitydecompositionGaussian mixture
collection DOAJ
language English
format Article
sources DOAJ
author Abraham Nunes
Martin Alda
Thomas Trappenberg
spellingShingle Abraham Nunes
Martin Alda
Thomas Trappenberg
Multiplicative Decomposition of Heterogeneity in Mixtures of Continuous Distributions
Entropy
heterogeneity
diversity
decomposition
Gaussian mixture
author_facet Abraham Nunes
Martin Alda
Thomas Trappenberg
author_sort Abraham Nunes
title Multiplicative Decomposition of Heterogeneity in Mixtures of Continuous Distributions
title_short Multiplicative Decomposition of Heterogeneity in Mixtures of Continuous Distributions
title_full Multiplicative Decomposition of Heterogeneity in Mixtures of Continuous Distributions
title_fullStr Multiplicative Decomposition of Heterogeneity in Mixtures of Continuous Distributions
title_full_unstemmed Multiplicative Decomposition of Heterogeneity in Mixtures of Continuous Distributions
title_sort multiplicative decomposition of heterogeneity in mixtures of continuous distributions
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2020-08-01
description A system’s heterogeneity (<i>diversity</i>) is the effective size of its event space, and can be quantified using the Rényi family of indices (also known as Hill numbers in ecology or Hannah–Kay indices in economics), which are indexed by an elasticity parameter <inline-formula><math display="inline"><semantics><mrow><mi>q</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Under these indices, the heterogeneity of a composite system (the <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-heterogeneity) is decomposable into heterogeneity arising from variation <i>within</i> and <i>between</i> component subsystems (the <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>- and <inline-formula><math display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-heterogeneity, respectively). Since the average heterogeneity of a component subsystem should not be greater than that of the pooled system, we require that <inline-formula><math display="inline"><semantics><mrow><mi>γ</mi><mo>≥</mo><mi>α</mi></mrow></semantics></math></inline-formula>. There exists a multiplicative decomposition for Rényi heterogeneity of composite systems with discrete event spaces, but less attention has been paid to decomposition in the continuous setting. We therefore describe multiplicative decomposition of the Rényi heterogeneity for continuous mixture distributions under parametric and non-parametric pooling assumptions. Under non-parametric pooling, the <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-heterogeneity must often be estimated numerically, but the multiplicative decomposition holds such that <inline-formula><math display="inline"><semantics><mrow><mi>γ</mi><mo>≥</mo><mi>α</mi></mrow></semantics></math></inline-formula> for <inline-formula><math display="inline"><semantics><mrow><mi>q</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. Conversely, under parametric pooling, <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-heterogeneity can be computed efficiently in closed-form, but the <inline-formula><math display="inline"><semantics><mrow><mi>γ</mi><mo>≥</mo><mi>α</mi></mrow></semantics></math></inline-formula> condition holds reliably only at <inline-formula><math display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Our findings will further contribute to heterogeneity measurement in continuous systems.
topic heterogeneity
diversity
decomposition
Gaussian mixture
url https://www.mdpi.com/1099-4300/22/8/858
work_keys_str_mv AT abrahamnunes multiplicativedecompositionofheterogeneityinmixturesofcontinuousdistributions
AT martinalda multiplicativedecompositionofheterogeneityinmixturesofcontinuousdistributions
AT thomastrappenberg multiplicativedecompositionofheterogeneityinmixturesofcontinuousdistributions
_version_ 1724650201583452160