Serum PD-1/PD-L1 Levels, Tumor Expression and PD-L1 Somatic Mutations in HER2-Positive and Triple Negative Normal-Like Feline Mammary Carcinoma Subtypes

Tumor microenvironment has gained great relevance due to its ability to regulate distinct checkpoints mediators, orchestrating tumor progression. Serum programmed cell death protein-1 (PD-1) and programmed death ligand-1 (PD-L1) levels were compared with healthy controls and with serum cytotoxic T-l...

Full description

Bibliographic Details
Main Authors: Catarina Nascimento, Ana Catarina Urbano, Andreia Gameiro, João Ferreira, Jorge Correia, Fernando Ferreira
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/12/6/1386
Description
Summary:Tumor microenvironment has gained great relevance due to its ability to regulate distinct checkpoints mediators, orchestrating tumor progression. Serum programmed cell death protein-1 (PD-1) and programmed death ligand-1 (PD-L1) levels were compared with healthy controls and with serum cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and tumor necrosis factor-alpha (TNF-α) levels in order to understand the role of PD-1/PD-L1 axis in cats with mammary carcinoma. PD-1 and PD-L1 expression was evaluated in tumor-infiltrating lymphocytes (TILs) and cancer cells, as the presence of somatic mutations. Results showed that serum PD-1 and PD-L1 levels were significantly higher in cats with HER2-positive (<i>p</i> = 0.017; <i>p</i> = 0.032) and triple negative (TN) normal-like mammary carcinomas (<i>p</i> = 0.004; <i>p</i> = 0.015), showing a strong positive correlation between serum CTLA-4 and TNF-α levels. In tumors, PD-L1 expression in cancer cells was significantly higher in HER2-positive samples than in TN normal-like tumors (<i>p</i> = 0.010), as the percentage of PD-L1-positive TILs (<i>p</i> = 0.037). <i>PD-L1</i> gene sequencing identified two heterozygous mutations in exon 4 (A245T; V252M) and one in exon 5 (T267S). In summary, results support the use of spontaneous feline mammary carcinoma as a model for human breast cancer and suggest that the development of monoclonal antibodies may be a therapeutic strategy.
ISSN:2072-6694