A Distributed Storage and Computation k-Nearest Neighbor Algorithm Based Cloud-Edge Computing for Cyber-Physical-Social Systems

The k-nearest neighbor (kNN) algorithm is a classic supervised machine learning algorithm. It is widely used in cyber-physical-social systems (CPSS) to analyze and mine data. However, in practical CPSS applications, the standard linear kNN algorithm struggles to efficiently process massive data sets...

Full description

Bibliographic Details
Main Authors: Wei Zhang, Xiaohui Chen, Yueqi Liu, Qian Xi
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
kNN
Online Access:https://ieeexplore.ieee.org/document/9001024/
Description
Summary:The k-nearest neighbor (kNN) algorithm is a classic supervised machine learning algorithm. It is widely used in cyber-physical-social systems (CPSS) to analyze and mine data. However, in practical CPSS applications, the standard linear kNN algorithm struggles to efficiently process massive data sets. This paper proposes a distributed storage and computation k-nearest neighbor (D-kNN) algorithm. The D-kNN algorithm has the following advantages: First, the concept of k-nearest neighbor boundaries is proposed and the k-nearest neighbor search within the k-nearest neighbors boundaries can effectively reduce the time complexity of kNN. Second, based on the k-neighbor boundary, massive data sets beyond the main storage space are stored on distributed storage nodes. Third, the algorithm performs k-nearest neighbor searching efficiently by performing distributed calculations at each storage node. Finally, a series of experiments were performed to verify the effectiveness of the D-kNN algorithm. The experimental results show that the D-kNN algorithm based on distributed storage and calculation effectively improves the operation efficiency of k-nearest neighbor search. The algorithm can be easily and flexibly deployed in a cloud-edge computing environment to process massive data sets in CPSS.
ISSN:2169-3536