Summary: | Silica gel was functionalized with six different quaternary diammonium centres derived from ethylenediamine (EDA), tetramethylenediamine (TMDA), hexamethylenediamine (HMDA), 1,8-diaminooctane (OMDA), 1,10-diaminodecane (DMDA) and 1,12-diaminododecane (DDMDA) to produce Si-QUAT EDA, Si-QUAT TMDA, Si-QUAT HMDA, Si-QUAT OMDA, Si-QUAT DMDA and Si-QUAT DDMDA, respectively. The synthesized silica-based resins were characterized by means of FTIR, XPS, SEM, BET surface area, thermogravimetric analysis and elemental analysis. The materials were used to investigate the adsorption and separation of [RhCl5(H2O)]2â and [IrCl6]2â. Batch studies (equilibrium and kinetic studies) were conducted to study the adsorption of [RhCl5(H2O)]2â and [IrCl6]2â onto Si-QUAT EDA, Si-QUAT TMDA, Si-QUAT HMDA, Si-QUAT OMDA, Si-QUAT DMDA and Si-QUAT DDMDA using single metal aqueous solutions. The Freundlich isotherm confirmed multilayer adsorption and the Freundlich constant (kf) displayed the following ascending order; Si-QUAT EDA, Si-QUAT TMDA, Si-QUAT HMDA, Si-QUAT OMDA and Si-QUAT DMDA, and a decrease in kf for Si-QUAT DDMDA. Kinetic studies suggest a pseudo-first order kinetic model. Column studies were also conducted for a binary mixture of these metal ion chlorido species ([RhCl5(H2O)]2â and [IrCl6]2â). The iridium loading capacities increased as the carbon spacer between the diammonium centres increased in the following order; Si-QUAT EDA, Si-QUAT TMDA, Si-QUAT HMDA, Si-QUAT OMDA and Si-QUAT DMDA (4.56Â mg/g, 6.88Â mg/g, 14.63Â mg/g, 19.01Â mg/g and 29.35Â mg/g, respectively). It was observed that the iridium loading capacity of Si-QUAT DDMDA decreased to 8.90Â mg/g. This paper presents iridium-specific materials that could be applied in solutions of secondary PGMs sources containing rhodium and iridium as well as in feed solutions from ore processing. Keywords: Silica gel, Quaternary diammonium centres, Rhodium, Iridium, Separation
|