Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in...

Full description

Bibliographic Details
Main Authors: Namgyu Kim, Jinnyun Kim, Bongjun Bang, Inyoung Kim, Hyun-Hee Lee, Jungwook Park, Young-Su Seo
Format: Article
Language:English
Published: Hanrimwon Publishing Company 2016-10-01
Series:The Plant Pathology Journal
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5051556
Description
Summary:Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins—two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein—were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.
ISSN:1598-2254