Summary: | North China is one of the country’s most important socio-economic centers, but its severe air pollution is a huge concern. In this region, precisely forecasting the daily photovoltaic power generation in winter is essential to improve equipment utilization rate and mitigate effects of power system on the environment. Considering the climatic characteristics of North China, the winter days are divided into three classifications. A forecasting model based on random forest algorithm is then designed for each classification. To evaluate its performance, the proposed model and three other methods are separately used to forecast the daily power generation at the Zhonghe PV station, which is located in the center of North China. Empirical results show that, because of its ability to reduce the risk of overfitting by balancing decision trees, the proposed model obtains mean absolute percentage errors as low as 2.83% and 3.89% for clear and cloudy days, respectively. For days in which weather conditions are unusual, forecasting errors are relatively large. On these days, enlarging training samples, performing subdivision, and imposing manual intervention can improve the forecasting precision. Generally, the proposed model is better than the other three methods for nearly all error evaluation indicators in each classification.
|