Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand
Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2014-11-01
|
Series: | Frontiers in Microbiology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fmicb.2014.00569/full |
id |
doaj-006f915522314addaa15fe2518e02de1 |
---|---|
record_format |
Article |
spelling |
doaj-006f915522314addaa15fe2518e02de12020-11-24T21:16:50ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2014-11-01510.3389/fmicb.2014.00569103232Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New ZealandKatrin eHug0William A Maher1Matthew eStott2Frank eKrikowa3Simon eFoster4John W Moreau5University of MelbourneUniversity of CanberraGNS ScienceUniversity of CanberraUniversity of CanberraUniversity of MelbourneAcid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with increased sehttp://journal.frontiersin.org/Journal/10.3389/fmicb.2014.00569/fullHot SpringsNew ZealandMicrobial Diversitysulfur cyclingmetagenome analysisarsenic speciation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Katrin eHug William A Maher Matthew eStott Frank eKrikowa Simon eFoster John W Moreau |
spellingShingle |
Katrin eHug William A Maher Matthew eStott Frank eKrikowa Simon eFoster John W Moreau Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand Frontiers in Microbiology Hot Springs New Zealand Microbial Diversity sulfur cycling metagenome analysis arsenic speciation |
author_facet |
Katrin eHug William A Maher Matthew eStott Frank eKrikowa Simon eFoster John W Moreau |
author_sort |
Katrin eHug |
title |
Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand |
title_short |
Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand |
title_full |
Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand |
title_fullStr |
Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand |
title_full_unstemmed |
Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand |
title_sort |
microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring champagne pool, new zealand |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Microbiology |
issn |
1664-302X |
publishDate |
2014-11-01 |
description |
Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with increased se |
topic |
Hot Springs New Zealand Microbial Diversity sulfur cycling metagenome analysis arsenic speciation |
url |
http://journal.frontiersin.org/Journal/10.3389/fmicb.2014.00569/full |
work_keys_str_mv |
AT katrinehug microbialcontributionstocoupledarsenicandsulfurcyclingintheacidsulfidehotspringchampagnepoolnewzealand AT williamamaher microbialcontributionstocoupledarsenicandsulfurcyclingintheacidsulfidehotspringchampagnepoolnewzealand AT matthewestott microbialcontributionstocoupledarsenicandsulfurcyclingintheacidsulfidehotspringchampagnepoolnewzealand AT frankekrikowa microbialcontributionstocoupledarsenicandsulfurcyclingintheacidsulfidehotspringchampagnepoolnewzealand AT simonefoster microbialcontributionstocoupledarsenicandsulfurcyclingintheacidsulfidehotspringchampagnepoolnewzealand AT johnwmoreau microbialcontributionstocoupledarsenicandsulfurcyclingintheacidsulfidehotspringchampagnepoolnewzealand |
_version_ |
1726015439765504000 |