Klein Topological Field Theories from Group Representations
We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the represe...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
National Academy of Science of Ukraine
2011-07-01
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Subjects: | |
Online Access: | http://dx.doi.org/10.3842/SIGMA.2011.070 |
Summary: | We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring. |
---|---|
ISSN: | 1815-0659 |