A computational model to investigate the effect of pennation angle on surface electromyogram of Tibialis Anterior.

This study has described and experimentally validated the differential electrodes surface electromyography (sEMG) model for tibialis anterior muscles during isometric contraction. This model has investigated the effect of pennation angle on the simulated sEMG signal. The results show that there is n...

Full description

Bibliographic Details
Main Authors: Diptasree Maitra Ghosh, Dinesh Kumar, Sridhar Poosapadi Arjunan, Ariba Siddiqi, Ramakrishnan Swaminathan
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5720512?pdf=render
Description
Summary:This study has described and experimentally validated the differential electrodes surface electromyography (sEMG) model for tibialis anterior muscles during isometric contraction. This model has investigated the effect of pennation angle on the simulated sEMG signal. The results show that there is no significant effect of pennation angle in the range 0° to 20° to the single fibre action potential shape recorded on the skin surface. However, the changes with respect to pennation angle are observed in sEMG amplitude, frequency and fractal dimension. It is also observed that at different levels of muscle contractions there is similarity in the relationships with Root Mean Square, Median Frequency, and Fractal Dimension of the recorded and simulated sEMG signals.
ISSN:1932-6203