Buckling of Single-Crystal Silicon Nanolines under Indentation

Atomic force microscope-(AFM-) based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs) of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and n...

Full description

Bibliographic Details
Main Authors: Min K. Kang, Bin Li, Paul S. Ho, Rui Huang
Format: Article
Language:English
Published: Hindawi Limited 2008-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2008/132728
Description
Summary:Atomic force microscope-(AFM-) based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs) of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.
ISSN:1687-4110
1687-4129