A novel method for calculating the energy cost of turning during running

Yoichi Hatamoto,1 Yosuke Yamada,2 Tatsuya Fujii,3 Yasuki Higaki,3 Akira Kiyonaga,3 Hiroaki Tanaka31Graduate School of Sports and Health Science, Fukuoka University, Nanakuma Jonan-ku Fukuoka, Japan; 2The Fukuoka University Institute for Physical Activity, Nanakuma Jonan-ku Fukuoka, Japan; 3Faculty o...

Full description

Bibliographic Details
Main Authors: Hatamoto Y, Yamada Y, Fujii T, Higaki Y, Kiyonaga A, Tanaka H
Format: Article
Language:English
Published: Dove Medical Press 2013-05-01
Series:Open Access Journal of Sports Medicine
Online Access:http://www.dovepress.com/a-novel-method-for-calculating-the-energy-cost-of-turning-during-runni-a13009
Description
Summary:Yoichi Hatamoto,1 Yosuke Yamada,2 Tatsuya Fujii,3 Yasuki Higaki,3 Akira Kiyonaga,3 Hiroaki Tanaka31Graduate School of Sports and Health Science, Fukuoka University, Nanakuma Jonan-ku Fukuoka, Japan; 2The Fukuoka University Institute for Physical Activity, Nanakuma Jonan-ku Fukuoka, Japan; 3Faculty of Sports and Health Science, Fukuoka University, Nanakuma Jonan-ku Fukuoka, JapanAbstract: Although changes of direction are one of the essential locomotor patterns in ball sports, the physiological demand of turning during running has not been previously investigated. We proposed a novel approach by which to evaluate the physiological demand of turning. The purposes of this study were to establish a method of measuring the energy expenditure (EE) of a 180&deg; turn during running and to investigate the effect of two different running speeds on the EE of a 180&deg; turn. Eleven young, male participants performed measurement sessions at two different running speeds (4.3 and 5.4 km/hour). Each measurement session consisted of five trials, and each trial had a different frequency of turns. At both running speeds, as the turn frequency increased the gross oxygen consumption (V &middot; O2) also increased linearly (4.3 km/hour, r = 0.973; 5.4 km/hour, r = 0.996). The V &middot; O2 of a turn at 5.4 km/hour (0.55 [SD 0.09] mL/kg) was higher than at 4.3 km/hour (0.34 [SD 0.13] mL/kg) (P < 0.001). We conclude that the gross V &middot; O2 of running at a fixed speed with turns is proportional to turn frequency and that the EE of a turn is different at different running speeds. The Different Frequency Accumulation Method is a useful tool for assessing the physiological demands of complex locomotor activity.Keywords: energy expenditure, turning, turn frequency, running speed, V &middot; O2, heart rate
ISSN:1179-1543