Hodge-Deligne polynomials of character varieties of free abelian groups

Let FF be a finite group and XX be a complex quasi-projective FF-variety. For r∈Nr\in {\mathbb{N}}, we consider the mixed Hodge-Deligne polynomials of quotients Xr/F{X}^{r}\hspace{-0.15em}\text{/}\hspace{-0.08em}F, where FF acts diagonally, and compute them for certain classes of varieties XX with s...

Full description

Bibliographic Details
Main Authors: Florentino Carlos, Silva Jaime
Format: Article
Language:English
Published: De Gruyter 2021-05-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2021-0038
id doaj-0050d15cf19b4eef828b6ef339601c59
record_format Article
spelling doaj-0050d15cf19b4eef828b6ef339601c592021-10-03T07:42:35ZengDe GruyterOpen Mathematics2391-54552021-05-0119133836210.1515/math-2021-0038Hodge-Deligne polynomials of character varieties of free abelian groupsFlorentino Carlos0Silva Jaime1Departamento de Matemática, Faculdade de Ciências, Univ. de Lisboa, Edf. C6, Campo Grande, 1749-016, Lisboa, PortugalDepartamento de Matemática, ISEL - Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007, Lisboa, PortugalLet FF be a finite group and XX be a complex quasi-projective FF-variety. For r∈Nr\in {\mathbb{N}}, we consider the mixed Hodge-Deligne polynomials of quotients Xr/F{X}^{r}\hspace{-0.15em}\text{/}\hspace{-0.08em}F, where FF acts diagonally, and compute them for certain classes of varieties XX with simple mixed Hodge structures (MHSs). A particularly interesting case is when XX is the maximal torus of an affine reductive group GG, and FF is its Weyl group. As an application, we obtain explicit formulas for the Hodge-Deligne and EE-polynomials of (the distinguished component of) GG-character varieties of free abelian groups. In the cases G=GL(n,C)G=GL\left(n,{\mathbb{C}}\hspace{-0.1em}) and SL(n,C)SL\left(n,{\mathbb{C}}\hspace{-0.1em}), we get even more concrete expressions for these polynomials, using the combinatorics of partitions.https://doi.org/10.1515/math-2021-0038free abelian groupcharacter varietymixed hodge structureshodge-deligne polynomialsequivariant e-polynomialsfinite quotients32s3520c3014l30
collection DOAJ
language English
format Article
sources DOAJ
author Florentino Carlos
Silva Jaime
spellingShingle Florentino Carlos
Silva Jaime
Hodge-Deligne polynomials of character varieties of free abelian groups
Open Mathematics
free abelian group
character variety
mixed hodge structures
hodge-deligne polynomials
equivariant e-polynomials
finite quotients
32s35
20c30
14l30
author_facet Florentino Carlos
Silva Jaime
author_sort Florentino Carlos
title Hodge-Deligne polynomials of character varieties of free abelian groups
title_short Hodge-Deligne polynomials of character varieties of free abelian groups
title_full Hodge-Deligne polynomials of character varieties of free abelian groups
title_fullStr Hodge-Deligne polynomials of character varieties of free abelian groups
title_full_unstemmed Hodge-Deligne polynomials of character varieties of free abelian groups
title_sort hodge-deligne polynomials of character varieties of free abelian groups
publisher De Gruyter
series Open Mathematics
issn 2391-5455
publishDate 2021-05-01
description Let FF be a finite group and XX be a complex quasi-projective FF-variety. For r∈Nr\in {\mathbb{N}}, we consider the mixed Hodge-Deligne polynomials of quotients Xr/F{X}^{r}\hspace{-0.15em}\text{/}\hspace{-0.08em}F, where FF acts diagonally, and compute them for certain classes of varieties XX with simple mixed Hodge structures (MHSs). A particularly interesting case is when XX is the maximal torus of an affine reductive group GG, and FF is its Weyl group. As an application, we obtain explicit formulas for the Hodge-Deligne and EE-polynomials of (the distinguished component of) GG-character varieties of free abelian groups. In the cases G=GL(n,C)G=GL\left(n,{\mathbb{C}}\hspace{-0.1em}) and SL(n,C)SL\left(n,{\mathbb{C}}\hspace{-0.1em}), we get even more concrete expressions for these polynomials, using the combinatorics of partitions.
topic free abelian group
character variety
mixed hodge structures
hodge-deligne polynomials
equivariant e-polynomials
finite quotients
32s35
20c30
14l30
url https://doi.org/10.1515/math-2021-0038
work_keys_str_mv AT florentinocarlos hodgedelignepolynomialsofcharactervarietiesoffreeabeliangroups
AT silvajaime hodgedelignepolynomialsofcharactervarietiesoffreeabeliangroups
_version_ 1716846007551000576