Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate

In this paper, we propose an SIVS epidemic model with continuous age structures in both infected and vaccinated classes and with a general nonlinear incidence. Firstly, we provide some basic properties of the system including the existence, uniqueness and positivity of solutions. Furthermore, we sho...

Full description

Bibliographic Details
Main Authors: Junyuan Yang, Yuming Chen
Format: Article
Language:English
Published: Taylor & Francis Group 2018-01-01
Series:Journal of Biological Dynamics
Subjects:
Online Access:http://dx.doi.org/10.1080/17513758.2018.1528393
id doaj-0024f82a34be4abb8110997a5fac76d6
record_format Article
spelling doaj-0024f82a34be4abb8110997a5fac76d62020-11-25T02:52:57ZengTaylor & Francis GroupJournal of Biological Dynamics1751-37581751-37662018-01-0112178981610.1080/17513758.2018.15283931528393Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rateJunyuan Yang0Yuming Chen1Shanxi UniversityWilfrid Laurier UniversityIn this paper, we propose an SIVS epidemic model with continuous age structures in both infected and vaccinated classes and with a general nonlinear incidence. Firstly, we provide some basic properties of the system including the existence, uniqueness and positivity of solutions. Furthermore, we show that the solution semiflow is asymptotic smooth. Secondly, we calculate the basic reproduction number $ \mathcal {R}_0 $ by employing the classical renewal process, which determines whether the disease persists or not. In the main part, we investigate the global stability of the equilibria by the approach of Lyanpunov functionals. Some numerical simulations are conducted to illustrate the theoretical results and to show the effect of the transmission rate and immunity waning rate on the disease prevalence.http://dx.doi.org/10.1080/17513758.2018.1528393infection agevaccination agenonlinear incidencepersistencelyapunov functional
collection DOAJ
language English
format Article
sources DOAJ
author Junyuan Yang
Yuming Chen
spellingShingle Junyuan Yang
Yuming Chen
Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate
Journal of Biological Dynamics
infection age
vaccination age
nonlinear incidence
persistence
lyapunov functional
author_facet Junyuan Yang
Yuming Chen
author_sort Junyuan Yang
title Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate
title_short Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate
title_full Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate
title_fullStr Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate
title_full_unstemmed Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate
title_sort theoretical and numerical results for an age-structured sivs model with a general nonlinear incidence rate
publisher Taylor & Francis Group
series Journal of Biological Dynamics
issn 1751-3758
1751-3766
publishDate 2018-01-01
description In this paper, we propose an SIVS epidemic model with continuous age structures in both infected and vaccinated classes and with a general nonlinear incidence. Firstly, we provide some basic properties of the system including the existence, uniqueness and positivity of solutions. Furthermore, we show that the solution semiflow is asymptotic smooth. Secondly, we calculate the basic reproduction number $ \mathcal {R}_0 $ by employing the classical renewal process, which determines whether the disease persists or not. In the main part, we investigate the global stability of the equilibria by the approach of Lyanpunov functionals. Some numerical simulations are conducted to illustrate the theoretical results and to show the effect of the transmission rate and immunity waning rate on the disease prevalence.
topic infection age
vaccination age
nonlinear incidence
persistence
lyapunov functional
url http://dx.doi.org/10.1080/17513758.2018.1528393
work_keys_str_mv AT junyuanyang theoreticalandnumericalresultsforanagestructuredsivsmodelwithageneralnonlinearincidencerate
AT yumingchen theoreticalandnumericalresultsforanagestructuredsivsmodelwithageneralnonlinearincidencerate
_version_ 1724727669671591936