Gap-Size-Dependent Effective Phase Transition in Metasurfaces of Closed-Ring Resonators

We theoretically investigate a metal-to-insulator transition in artificial two-dimensional (2D) crystals (i.e., metasurfaces) of tightly coupled closed-ring resonators. Strong interaction between unit resonators in the metasurfaces yields the effective permittivity highly dependent on the lattice sp...

Full description

Bibliographic Details
Main Authors: Seojoo Lee, Ji-Hun Kang
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/6/684
Description
Summary:We theoretically investigate a metal-to-insulator transition in artificial two-dimensional (2D) crystals (i.e., metasurfaces) of tightly coupled closed-ring resonators. Strong interaction between unit resonators in the metasurfaces yields the effective permittivity highly dependent on the lattice spacing of unit resonators. Through our rigorous theory, we provide a closed form of effective permittivity of the metasurface and reveal that the permittivity possesses a Lorentzian-type resonant behavior, implying that the transition of the effective permittivity can arise when the lattice spacing passes a critical value.
ISSN:2073-4352