Inhibition of the Eukaryotic 80S Ribosome as a Potential Anticancer Therapy: A Structural Perspective

Protein biosynthesis is a vital process for all kingdoms of life. The ribosome is the massive ribonucleoprotein machinery that reads the genetic code, in the form of messenger RNA (mRNA), to produce proteins. The mechanism of translation is tightly regulated to ensure that cell growth is well sustai...

Full description

Bibliographic Details
Main Authors: Simone Pellegrino, Salvatore Terrosu, Gulnara Yusupova, Marat Yusupov
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/13/17/4392
Description
Summary:Protein biosynthesis is a vital process for all kingdoms of life. The ribosome is the massive ribonucleoprotein machinery that reads the genetic code, in the form of messenger RNA (mRNA), to produce proteins. The mechanism of translation is tightly regulated to ensure that cell growth is well sustained. Because of the central role fulfilled by the ribosome, it is not surprising that halting its function can be detrimental and incompatible with life. In bacteria, the ribosome is a major target of inhibitors, as demonstrated by the high number of small molecules identified to bind to it. In eukaryotes, the design of ribosome inhibitors may be used as a therapy to treat cancer cells, which exhibit higher proliferation rates compared to healthy ones. Exciting experimental achievements gathered during the last few years confirmed that the ribosome indeed represents a relevant platform for the development of anticancer drugs. We provide herein an overview of the latest structural data that helped to unveil the molecular bases of inhibition of the eukaryotic ribosome triggered by small molecules.
ISSN:2072-6694