Machine Learning im Logistikmanagement - Entwicklung eines Gestaltungsansatzes zum Einsatz von ML-Anwendungen in logistischen Entscheidungsprozessen

As a subfield of artificial intelligence, machine learning (ML) represents a key technology of the 21st century. Using the mathematical-statistical methods, technical systems can be developed that independently discover empirical patterns on the basis of data and thus adapt their behavior to solve b...

Full description

Bibliographic Details
Format: eBook
Language:German
Published: Berlin Universitätsverlag der Technischen Universität Berlin 2023
Series:Schriftenreihe Logistik der Technischen Universität Berlin
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03816namaa2200457uu 4500
001 doab99217
003 oapen
005 20230418
006 m o d
007 cr|mn|---annan
008 230418s2023 xx |||||o ||| 0|ger d
020 |a 9783798332973 
020 |a 9783798332980 
020 |a depositonce-16658 
024 7 |a 10.14279/depositonce-16658  |2 doi 
040 |a oapen  |c oapen 
041 0 |a ger 
042 |a dc 
720 1 |a Weinke, Manuel  |4 aut 
245 0 0 |a Machine Learning im Logistikmanagement - Entwicklung eines Gestaltungsansatzes zum Einsatz von ML-Anwendungen in logistischen Entscheidungsprozessen 
260 |a Berlin  |b Universitätsverlag der Technischen Universität Berlin  |c 2023 
300 |a 1 online resource (330 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Schriftenreihe Logistik der Technischen Universität Berlin 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a As a subfield of artificial intelligence, machine learning (ML) represents a key technology of the 21st century. Using the mathematical-statistical methods, technical systems can be developed that independently discover empirical patterns on the basis of data and thus adapt their behavior to solve business problems in the sense of a system-based learning. According to the complexity of planning, controlling and monitoring tasks in manufacturing value chains, ML applications are considered to be of high relevance for the support and autonomous operation of logistics decision-making processes. For this field of logistics management, the dissertation investigates central questions concerning the use of ML. By studying the current state of research and by intensively involving the practice, possible use cases, corresponding effects with potentials and limitations, as well as necessary requirements are identified. The result of the dissertation represents a design approach that shows suitable measures for the fulfillment of these domain- and technology-specific requirements which are structured according to several areas of action. These range from infrastructural activities for the integration of data to organizational and procedural measures for conducting ML projects up to the management of changed roles for employees. Due to its interdisciplinary and practical orientation, the developed design approach is a useful tool for companies to cope with the challenges of implementing ML in logistics management. Together with other deliverables of the dissertation, which also include the technical characteristics and future developments of ML, managers can acquire the expertise to successfully design the adoption of the technology and, at the same time, implement important framework conditions for the digital transformation of their enterprises. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a German 
653 |a artificial intelligence 
653 |a data analytics 
653 |a digital transformation 
653 |a logistics 
653 |a machine learning 
653 |a supply chain management 
653 |a thema EDItEUR::K Economics, Finance, Business and Management::KJ Business and Management::KJM Management and management techniques 
653 |a thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TR Transport technology and trades 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/99217  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/62254/1/9783798332973.pdf  |7 0  |z Open Access: DOAB, download the publication