Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
CT
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05095namaa2201117uu 4500
001 doab98728
003 oapen
005 20230405
006 m o d
007 cr|mn|---annan
008 230405s2023 xx |||||o ||| 0|eng d
020 |a 9783036564340 
020 |a 9783036564357 
020 |a books978-3-0365-6435-7 
024 7 |a 10.3390/books978-3-0365-6435-7  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
720 1 |a Antani, Sameer  |4 edt 
720 1 |a Antani, Sameer  |4 oth 
720 1 |a Rajaraman, Sivaramakrishnan  |4 edt 
720 1 |a Rajaraman, Sivaramakrishnan  |4 oth 
245 0 0 |a Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (246 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, "Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases", we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a AL/TTR amyloidosis 
653 |a aorta 
653 |a artificial intelligence 
653 |a cardiac amyloidosis 
653 |a cardiopulmonary disease 
653 |a cardiopulmonary monitoring 
653 |a chest X-ray 
653 |a chest X-rays 
653 |a chronic obstructive pulmonary disease 
653 |a computed tomography 
653 |a computer-based devices 
653 |a conventional radiography 
653 |a convolutional neural network 
653 |a coronary artery disease 
653 |a COVID-19 
653 |a CT 
653 |a deep learning 
653 |a diagnostic procedure 
653 |a drug resistance 
653 |a Electrical Impedance Tomography 
653 |a ensemble learning 
653 |a explainability 
653 |a faster CNN 
653 |a generalization 
653 |a hybrid deep learning 
653 |a hypertrophic cardiomyopathy 
653 |a left ventricular hypertrophy 
653 |a localization 
653 |a lung 
653 |a lung cancer 
653 |a lung CT images 
653 |a lung imaging 
653 |a lungs 
653 |a machine learning 
653 |a mean average precision 
653 |a medical imaging 
653 |a modality-specific knowledge 
653 |a n/a 
653 |a nodule detection 
653 |a object detection 
653 |a observer tests 
653 |a performance 
653 |a pneumonia 
653 |a pre-trained VGG19 
653 |a pulmonary artery 
653 |a pulmonary hypertension 
653 |a radiology 
653 |a RetinaNet 
653 |a segmentation 
653 |a source data set 
653 |a supervised classification 
653 |a thoracic diagnostic imaging 
653 |a transfer learning 
653 |a Tuberculosis (TB) 
653 |a variability 
653 |a VGG-SegNet 
653 |a X-rays 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/98728  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/6735  |7 0  |z Open Access: DOAB, download the publication