Computational Methods for Medical and Cyber Security

Over the past decade, computational methods, including machine learning (ML) and deep learning (DL), have been exponentially growing in their development of solutions in various domains, especially medicine, cybersecurity, finance, and education. While these applications of machine learning algorith...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
HL7
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04615namaa2201237uu 4500
001 doab97472
003 oapen
005 20230220
006 m o d
007 cr|mn|---annan
008 230220s2022 xx |||||o ||| 0|eng d
020 |a 9783036551159 
020 |a 9783036551166 
020 |a books978-3-0365-5115-9 
024 7 |a 10.3390/books978-3-0365-5115-9  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a U  |2 bicssc 
720 1 |a Luo, Suhuai  |4 edt 
720 1 |a Luo, Suhuai  |4 oth 
720 1 |a Shaukat, Kamran  |4 edt 
720 1 |a Shaukat, Kamran  |4 oth 
245 0 0 |a Computational Methods for Medical and Cyber Security 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (228 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Over the past decade, computational methods, including machine learning (ML) and deep learning (DL), have been exponentially growing in their development of solutions in various domains, especially medicine, cybersecurity, finance, and education. While these applications of machine learning algorithms have been proven beneficial in various fields, many shortcomings have also been highlighted, such as the lack of benchmark datasets, the inability to learn from small datasets, the cost of architecture, adversarial attacks, and imbalanced datasets. On the other hand, new and emerging algorithms, such as deep learning, one-shot learning, continuous learning, and generative adversarial networks, have successfully solved various tasks in these fields. Therefore, applying these new methods to life-critical missions is crucial, as is measuring these less-traditional algorithms' success when used in these fields. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Computing and Information Technology  |2 bicssc 
653 |a a survey 
653 |a academic performance 
653 |a adversarial machine learning 
653 |a ANOVA 
653 |a behavioural finance 
653 |a big data frameworks 
653 |a blockchain 
653 |a browser security 
653 |a cloud computing 
653 |a clustering 
653 |a cognitive bias 
653 |a comparative analysis 
653 |a computational models 
653 |a convolutional neural networks 
653 |a cyber-attacks 
653 |a cyber-security 
653 |a cybersecurity 
653 |a data communication 
653 |a data science 
653 |a database 
653 |a deep learning 
653 |a DeepLabV3plus 
653 |a distributed frameworks 
653 |a distributed ledger 
653 |a educational data mining 
653 |a electronic health record 
653 |a environment 
653 |a explainable machine learning 
653 |a fault tolerance 
653 |a financial technology 
653 |a fintech 
653 |a Flink 
653 |a Hadoop 
653 |a HL7 
653 |a Hyperledger Composer 
653 |a identity management 
653 |a imbalanced datasets 
653 |a intelligent tutoring system 
653 |a internet of things 
653 |a investor's profile 
653 |a learning analytics 
653 |a machine learning 
653 |a machine translation 
653 |a medical image segmentation 
653 |a medical services 
653 |a metaheuristics 
653 |a natural language processing 
653 |a password security 
653 |a phishing detection 
653 |a RAFT 
653 |a regtech 
653 |a Samza 
653 |a SE block 
653 |a secondary education 
653 |a social media 
653 |a social sciences 
653 |a Spark 
653 |a SPSS 
653 |a stock market 
653 |a Storm 
653 |a stream processing systems 
653 |a student field forecasting 
653 |a supervised learning 
653 |a Teheran Stock Exchange 
653 |a text-to-SQL 
653 |a transfer learning 
653 |a U-net 
653 |a unsupervised learning 
653 |a website phishing 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/97472  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/6015  |7 0  |z Open Access: DOAB, download the publication