Técnicas de minería de datos para determinar la deserción escolar

La presente investigación tuvo por objetivo determinar las técnicas de minería de datos y los factores asociados que permitan segmentar los alumnos con riesgo de deserción en el Instituto Superior Tecnológico Privado ISTEPSA, en Andahuaylas (Perú). Para este fin se aplicaron técnicas de Aprendizaje...

Full description

Bibliographic Details
Format: eBook
Language:Spanish
Published: Puno Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú 2022
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04456namaa2200445uu 4500
001 doab93548
003 oapen
005 20221111
006 m o d
007 cr|mn|---annan
008 221111s2022 xx |||||o ||| 0|spa d
020 |a 978-612-5069-42-9 
020 |a inudi.b.053 
024 7 |a 10.35622/inudi.b.053  |2 doi 
040 |a oapen  |c oapen 
041 0 |a spa 
042 |a dc 
072 7 |a TBM  |2 bicssc 
720 1 |a Apaza-Tarqui, Alejandro  |4 aut 
720 1 |a Borda-Navedos, Walter  |4 aut 
720 1 |a Cayo, Noemí  |4 aut 
720 1 |a Huanca-Suaquita, Jhon  |4 aut 
245 0 0 |a Técnicas de minería de datos para determinar la deserción escolar 
260 |a Puno  |b Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú  |c 2022 
300 |a 1 online resource (125 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a La presente investigación tuvo por objetivo determinar las técnicas de minería de datos y los factores asociados que permitan segmentar los alumnos con riesgo de deserción en el Instituto Superior Tecnológico Privado ISTEPSA, en Andahuaylas (Perú). Para este fin se aplicaron técnicas de Aprendizaje Automático y Minería de Datos implementadas en software WEKA: Se aplicó el método de evaluación CfsSubsetEval y el método de búsqueda BestFirst para seleccionar los factores de mayor significancia, para establecer los patrones se usó el algoritmo de asociación A priori y para segmentar, se usó el algoritmo de Maximización del Valor Esperado "Expectation Maximissation" (EM) y mapas auto organizados de Kohonen(Self Organizing Maps, SOM). Se obtuvo los siguientes resultados: 06 factores significativos: Motivación de sesiones, Laboratorios y Aulas de la Institución, Aceptación de la carrera profesional, Cursos Repetidos en el colegio y Semestre Académico; para los patrones de deserción el 100% de los estudiantes que se retiran califican como deficiente la motivación, aulas y laboratorios; además el 96% consideran deficiente a la carrera profesional que estudian y 90% de los que se retiran son de cuarto semestre; En la segmentación se ha construido 3 grupos con el algoritmo EM y 4 grupos para el algoritmo SOM, donde se observa que los factores académicos son determinantes para la deserción de alumnos. 
520 |a The objective of this research was to determine the data mining techniques and the associated factors that allow the segmentation of students at risk of dropping out at the Instituto Superior Tecnológico Privado ISTEPSA, in Andahuaylas (Peru). For this purpose, Automatic Learning and Data Mining techniques implemented in WEKA software were applied: The CfsSubsetEval evaluation method and the BestFirst search method were applied to select the most significant factors, to establish the patterns the association algorithm A was used. priori and to segment, the Expected Value Maximization algorithm "Expectation Maximissation" (EM) and Kohonen's self-organizing maps (Self Organizing Maps, SOM) were used. The following results were obtained: 06 significant factors: Motivation of sessions, Laboratories and Classrooms of the Institution, Acceptance of the professional career, Repeated Courses in the school and Academic Semester; For dropout patterns, 100% of students who dropout rate motivation, classrooms, and laboratories as deficient; In addition, 96% consider the professional career they are studying to be deficient and 90% of those who withdraw are from the fourth semester; In the segmentation, 3 groups have been constructed with the EM algorithm and 4 groups for the SOM algorithm, where it is observed that the academic factors are decisive for the dropout of students. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a Spanish 
650 7 |a Instruments and instrumentation  |2 bicssc 
653 |a aprendizaje automático 
653 |a deserción estudiantil 
653 |a minería de datos 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/93548  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://editorial.inudi.edu.pe/index.php/editorialinudi/catalog/book/59  |7 0  |z Open Access: DOAB, download the publication