Remote Sensing of Biophysical Parameters

Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf ang...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel 2022
Subjects:
6SV
CCC
FVC
GPR
LAI
LCC
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05478namaa2201261uu 4500
001 doab92052
003 oapen
005 20220916
006 m o d
007 cr|mn|---annan
008 220916s2022 xx |||||o ||| 0|eng d
020 |a 9783036549019 
020 |a 9783036549026 
020 |a books978-3-0365-4902-6 
024 7 |a 10.3390/books978-3-0365-4902-6  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
720 1 |a García-Haro, Francisco Javier  |4 edt 
720 1 |a Campos-Taberner, Manuel  |4 edt 
720 1 |a Campos-Taberner, Manuel  |4 oth 
720 1 |a Fang, Hongliang  |4 edt 
720 1 |a Fang, Hongliang  |4 oth 
720 1 |a García-Haro, Francisco Javier  |4 oth 
245 0 0 |a Remote Sensing of Biophysical Parameters 
260 |a Basel  |c 2022 
300 |a 1 online resource (274 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security). 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
653 |a 6SV 
653 |a active learning 
653 |a agriculture 
653 |a airborne laser scanning (ALS) 
653 |a artificial neural networks 
653 |a ASD Field Spec 
653 |a biophysical parameters (LAI 
653 |a burn severity 
653 |a canopy chlorophyll content 
653 |a canopy loss 
653 |a canopy water content 
653 |a CCC 
653 |a climate data records (CDR) 
653 |a clumping index (CI) 
653 |a Discrete Anisotropic Radiative Transfer (DART) model 
653 |a EnMAP 
653 |a equivalent water thickness 
653 |a FAPAR 
653 |a FAPAR) 
653 |a fluorescence 
653 |a forest 
653 |a fraction of photosynthetically active radiation absorbed by vegetation (FPAR) 
653 |a FVC 
653 |a GPR 
653 |a hyperspectral 
653 |a in vivo 
653 |a INFORM 
653 |a invasive vegetation 
653 |a LAI 
653 |a Landsat 8 
653 |a LaSRC 
653 |a LCC 
653 |a lead ions 
653 |a leaf area index 
653 |a leaf area index (LAI) 
653 |a LEDAPS 
653 |a machine learning 
653 |a meteosat second generation (MSG) 
653 |a Moderate Resolution Imaging Spectroradiometer (MODIS) 
653 |a MODIS 
653 |a multispectral sensor 
653 |a NDVI 
653 |a PROSAIL 
653 |a rapeseed crop 
653 |a remote sensing indices 
653 |a riparian 
653 |a SAIL 
653 |a Satellite Application Facility for Land Surface Analysis (LSA SAF) 
653 |a Sentinel-2 
653 |a SEVIRI 
653 |a site-specific farming 
653 |a soil albedo 
653 |a spaceborne laser scanning (SLS) 
653 |a spectrometry 
653 |a spectroscopy 
653 |a SREM 
653 |a stochastic spectral mixture model (SSMM) 
653 |a surface reflectance 
653 |a terrestrial laser scanning (TLS) 
653 |a the fraction of radiation absorbed by photosynthetic components (FAPARgreen) 
653 |a three-dimensional radiative transfer model (3D RTM) 
653 |a triple-source 
653 |a uncertainty assessment 
653 |a unmanned aircraft vehicle 
653 |a vegetation indices 
653 |a vegetation radiative transfer model 
653 |a vertical foliage profile (VFP) 
653 |a wildfire 
653 |a woody area index (WAI) 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/92052  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5926  |7 0  |z Open Access: DOAB, download the publication