AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)

This book is a collection of the accepted papers presented at the Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD) in conjunction with the 36th AAAI Conference on Artificial Intelligence 2022. During AIBSD 2022, the attendees addressed the existing issues of data bias and scarc...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 02592namaa2200625uu 4500
001 doab91231
003 oapen
005 20220812
006 m o d
007 cr|mn|---annan
008 220812s2022 xx |||||o ||| 0|eng d
020 |a 9783036546810 
020 |a 9783036546827 
020 |a books978-3-0365-4682-7 
024 7 |a 10.3390/books978-3-0365-4682-7  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
245 0 0 |a AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD) 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (186 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This book is a collection of the accepted papers presented at the Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD) in conjunction with the 36th AAAI Conference on Artificial Intelligence 2022. During AIBSD 2022, the attendees addressed the existing issues of data bias and scarcity in Artificial Intelligence and discussed potential solutions in real-world scenarios. A set of papers presented at AIBSD 2022 is selected for further publication and included in this book. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a bias detection 
653 |a contextualized embeddings 
653 |a contrastive learning 
653 |a coresets 
653 |a deep learning 
653 |a face-recognition models 
653 |a facial attributes 
653 |a fairness 
653 |a forecasting 
653 |a gender bias 
653 |a natural language processing 
653 |a noisy labels 
653 |a optimization 
653 |a out-of-distribution generalization 
653 |a permutation equivariance 
653 |a robustness 
653 |a social bias 
653 |a supervised contrastive learning 
653 |a temporal bias 
653 |a transfer learning 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/91231  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5877  |7 0  |z Open Access: DOAB, download the publication