Non-Newtonian Microfluidics

Microfluidics has seen a remarkable growth over recent decades, with its extensive applications in engineering, medicine, biology, chemistry, etc. Many of these real applications of microfluidics involve the handling of complex fluids, such as whole blood, protein solutions, and polymeric solutions,...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05314namaa2201297uu 4500
001 doab91223
003 oapen
005 20220812
006 m o d
007 cr|mn|---annan
008 220812s2022 xx |||||o ||| 0|eng d
020 |a 9783036546414 
020 |a 9783036546421 
020 |a books978-3-0365-4641-4 
024 7 |a 10.3390/books978-3-0365-4641-4  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
720 1 |a Mei, Lanju  |4 edt 
720 1 |a Mei, Lanju  |4 oth 
720 1 |a Qian, Shizhi  |4 edt 
720 1 |a Qian, Shizhi  |4 oth 
245 0 0 |a Non-Newtonian Microfluidics 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (252 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Microfluidics has seen a remarkable growth over recent decades, with its extensive applications in engineering, medicine, biology, chemistry, etc. Many of these real applications of microfluidics involve the handling of complex fluids, such as whole blood, protein solutions, and polymeric solutions, which exhibit non-Newtonian characteristics-specifically viscoelasticity. The elasticity of the non-Newtonian fluids induces intriguing phenomena, such as elastic instability and turbulence, even at extremely low Reynolds numbers. This is the consequence of the nonlinear nature of the rheological constitutive equations. The nonlinear characteristic of non-Newtonian fluids can dramatically change the flow dynamics, and is useful to enhance mixing at the microscale. Electrokinetics in the context of non-Newtonian fluids are also of significant importance, with their potential applications in micromixing enhancement and bio-particles manipulation and separation. In this Special Issue, we welcomed research papers, and review articles related to the applications, fundamentals, design, and the underlying mechanisms of non-Newtonian microfluidics, including discussions, analytical papers, and numerical and/or experimental analyses. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a adaptive dynamic mesh refinement 
653 |a bioheat equation 
653 |a boundary layer analysis 
653 |a brownian motion 
653 |a bvp4c 
653 |a chemical reaction 
653 |a constructive and destructive chemical reaction 
653 |a convective boundary conditions 
653 |a dielectric field 
653 |a direction-dependent 
653 |a droplet deformation 
653 |a droplet migration 
653 |a effective thermal conductivity 
653 |a elastic instability 
653 |a electroosmosis 
653 |a electroosmotic flow 
653 |a entropy generation 
653 |a error analysis 
653 |a finite element procedure 
653 |a finite element scheme 
653 |a fractal scaling 
653 |a group similarity analysis 
653 |a heat and mass transfer rates 
653 |a heat generation 
653 |a heat transfer 
653 |a heterogeneous surface potential 
653 |a human body 
653 |a hybrid nanofluid 
653 |a hybrid nanoparticles 
653 |a induced magnetic field 
653 |a inertial focusing 
653 |a Janus droplet 
653 |a joule heating 
653 |a Laplace transform 
653 |a maxwell nanofluid 
653 |a microfluid 
653 |a microfluidics 
653 |a micromixing performance 
653 |a Monte Carlo 
653 |a n/a 
653 |a nanoparticle volume fraction 
653 |a non-Newtonian fluid 
653 |a Oldroyd-B model 
653 |a OpenFOAM 
653 |a parametric investigation 
653 |a particle separation 
653 |a porous media 
653 |a porous rotating disk 
653 |a power-law fluid 
653 |a power-law model 
653 |a power-law nanofluid 
653 |a RK4 technique 
653 |a shear-thinning fluid 
653 |a Soret and Dufour effect 
653 |a spiral channel 
653 |a stretching disk 
653 |a thermal radiations 
653 |a thermal relaxation time 
653 |a thermally radiative fluid 
653 |a transient two-layer flow 
653 |a tri-hybrid nanoparticles 
653 |a variable magnetic field 
653 |a viscoelastic flow 
653 |a viscoelastic fluid 
653 |a viscoelastic material 
653 |a viscoelasticity 
653 |a viscous dissipation 
653 |a volume of fluid method 
653 |a von karman transformation 
653 |a wall obstacle 
653 |a wettability gradient 
653 |a wettable surface 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/91223  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5869  |7 0  |z Open Access: DOAB, download the publication